eduCF#60 D. Magic Gems /// 矩阵快速幂

题目大意:

给定n m (1≤N≤1e18, 2≤M≤100)

一个魔法水晶可以分裂成连续的m个普通水晶

求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7)

input

4 2

output

5

设1为魔法水晶 0为普通水晶

n=4 m=2有5种方案 即

1111、0011、1001、1100、0000

得到递推公式

当 i < m 时 dp[ i ] = 1

当 i >= m 时 dp[ i ] = dp[ i-1 ] + dp[ i-m ]

n的范围是1e18 构造矩阵用矩阵快速幂

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
const int N=1e5+5;
const int M=105;
const int mod=1e9+7;

LL n,m;
struct MAT {
    LL a[M][M];
    MAT(){ mem(a,0); }
    MAT operator*(MAT p) {
        MAT res;
        for(int i=0;i<M;i++)
        for(int j=0;j<M;j++)
        for(int k=0;k<M;k++)
            res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
        return res;
    }
};
MAT mod_pow(MAT A,LL x) {
    MAT res;
    res.a[0][0]=1;
    while(x) {
        if(x&1) res=res*A;
        A=A*A; x>>=1;
    } return res;
}

int main()
{
    while(~scanf("%I64d%I64d",&n,&m)) {
        MAT A,B;
        for(int i=0;i<m;i++)
            A.a[i][i+1]=1;
        A.a[0][0]=A.a[m-1][0]=1;
        B=mod_pow(A,n);
        printf("%I64d\n",B.a[0][0]);
    }

    return 0;
}

原文地址:https://www.cnblogs.com/zquzjx/p/10404391.html

时间: 2024-10-09 23:51:28

eduCF#60 D. Magic Gems /// 矩阵快速幂的相关文章

Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 注意初始化 代码: #include<bits/stdc++.h> using namespace std; #define mod 1000000007 typedef long long ll; #define MAX 105 const int N=105;//矩阵的大小 int T; ll

[递推+矩阵快速幂]Codeforces 1117D - Magic Gems

传送门:Educational Codeforces Round 60 – D 题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem,现在需要N个gem,可以选择一定的magic gem,指定每一个分裂或不分裂,问一共有多少种方案 两种分裂方案不同当且仅当magic gem的数量不同,或者分裂的magic gem的索引不同. 思路: 1.首先从dp的角度出发 设F(i)为最终需要i个gem的方案数,容易得到递推式: (总方案数 = 最右边的m

poj 2888 Magic Bracelet(Polya+矩阵快速幂)

Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 Description Ginny’s birthday is coming soon. Harry Potter is preparing a birthday present for his new girlfriend. The present is a magic bracelet which

HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 Endless Punishment Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 52    Accepted Submissi

矩阵快速幂刷题系列

来源自http://blog.csdn.net/chenguolinblog/article/details/10309423 hdu 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5587    Accepted Submission(s): 4200 Problem Description A为一个方阵,则Tr

hdu 6198(矩阵快速幂)

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 175    Accepted Submission(s): 119 暴力发现当4 12 33 88 232 和斐波那契数列对比  答案为 第2*k+3个数减1 直接用矩阵快速幂求的F[2*k+3]  然后减1 A=1,B=0; 然后矩阵快速幂2*k

HDU 2243 考研路茫茫――单词情结 ——(AC自动机+矩阵快速幂)

和前几天做的AC自动机类似. 思路简单但是代码200余行.. 假设solve_sub(i)表示长度为i的不含危险单词的总数. 最终答案为用总数(26^1+26^2+...+26^n)减去(solve_sub(1)+solve(2)+...+solve_sub(n)).前者构造f[i]=f[i-1]*26+26然后矩阵快速幂即可(当然也可以分治的方法).后者即构造出dp矩阵p,然后计算(p^1+p^2+...+p^n),对其分治即可. 代码如下: 1 #include <stdio.h> 2 #

【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. 在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key

hdu3658(矩阵快速幂)

题意: 给出一个序列的长度; 这个序列只能有A-Z,a-z; 而且要求相邻的字母asiic 码差值小于等于32;而且必须有一个是等于32的; 问有种排列; 思路: 构造一个52 * 52的矩阵,把每个字母后面能跟哪些标为1: 然后矩阵快速幂: 然后再把差值为32的标志为0,在算一次(这样算出来的就是肯定不会有差值等于32的) 两次结果相减: #include<cstdio> #include<cstring> #define ll long long struct mat { ll