CF-1013
A. Piles With Stones
比较两个序列的和,因为只能拿走或者不拿,所以总数不能变大。
B. And
- 答案只有 -1,0,1,2几种可能,所以对于每一种答案都暴力扫一次是可以的
- 或者对于每个 \(a_i\) ,将\(a_i\) 标记加一,如果\(a_i \neq a_i\& x\) ,将\(a_i\&x\) 用另一个数组标记加一。然后整体扫一次就可以了
#include <bits/stdc++.h>
using namespace std;
int n,x;
int a[100010],b[100010];
int main(){
cin>>n>>x;
for(int i=1;i<=n;i++){
int y;
scanf("%d",&y);
a[y]++;
if((x&y)!=y)
b[x&y]++;
}
int res = -1;
for(int i=0;i<=100000;i++)
{
if(a[i]>=2)res = 0;
else if(res!=0&&a[i]==1&&b[i]>=1)res = 1;
else if(res!=1&&b[i]>=2)res = 2;
}
cout<<res<<endl;
return 0;
}
C. Photo of The Sky
我们关心的只是 \(x_{max} - x_{min}\) 和 \(y_{max} - y_{min}\)
现在的只是整个坐标的合集。先整体排个序。
? \[ a_1,a_2 \cdots a_{2\times n-1},a_{2 \times n}\]
- 如果序列中最大值和最小值在同一个集合,那么枚举另一个集合的最大元素或者最小元素,得到另一个集合的最小的 \(max - min\)
- 如果序列中最大值和最小值不在同一个集合,那么只有将 \(a_1 \cdots a_n\) 分到一个集合,\(a_{n+1} \cdots a_{2\times n}\) 分到一个集合时最优
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll a[200010];
int main(){
scanf("%d",&n);
for(int i=0;i<2*n;i++)
scanf("%lld",&a[i]);
sort(a,a+2*n);
ll mi = 1ll<<60;
//第一种情况,枚举另一个集合的最小值a[i]
for(int i=1;i<n;i++)
mi = min(mi,a[i+n-1]-a[i]));
mi = mi*(a[2*n-1]-a[0]);//结算,获得面积
mi = min(mi,(a[n-1]-a[0])*(a[2*n-1]-a[n]));//与第二种情况作比较
cout<<mi<<endl;
return 0;
}
D. Chemical table
tag: 并查集,联通块
题目操作:若有\((r_1,c_1),(r_1,c_2),(r_2,c_1)\) ,那么自动生成\((r_2,c_2)\)
抛开二维平面,寻找坐标点之间的关系,可以发现一条规律:如果\(r_1\)与\(c_1,r_2\)有关系,\(r_2\)与\(c_2\)有关系,则\(r_2\)与\(c_2\)会有关系。如果把他们看成点与点之间的关系,可以画出一个图,这个图是联通的。而任意两个不联通的点只需要再添加一个点就可以使得他们联通。所以我们只需要求出联通块个数就可以知道答案了。
#include <bits/stdc++.h>
using namespace std;
int n,m,q;
int f[400010];
//并查集
int find(int x){
return x==f[x]? x : f[x] = find(f[x]);
}
int main(){
cin>>n>>m>>q;
for(int i=1;i<=n+m;i++)f[i] = i;
for(int i=0;i<q;i++){
int x,y;
cin>>x>>y;
y+=n;
x = find(x);y=find(y);
f[x] = y;
}
//先随便找一个联通块
int root = find(1);
int res = 0;
for(int i=2;i<=n+m;i++){
int x = find(i);
//如果发现另一个联通块,则先使得他们联通,然后res++
if(x!=root){
f[x] = root;res++;
}
}
cout<<res<<endl;
return 0;
}
原文地址:https://www.cnblogs.com/chd-acm/p/10357932.html
时间: 2024-09-30 14:49:37