We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated.
XX <- domino XX <- "L" tromino X
Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.
(In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)
Example: Input: 3 Output: 5 Explanation: The five different ways are listed below, different letters indicates different tiles: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY
Note:
- N will be in range
[1, 1000]
.
有两种形状的瓷砖:一种是 2x1 的多米诺形,另一种是形如 "L" 的托米诺形。两种形状都可以旋转。
XX <- 多米诺 XX <- "L" 托米诺 X
给定 N 的值,有多少种方法可以平铺 2 x N 的面板?返回值 mod 10^9 + 7。
(平铺指的是每个正方形都必须有瓷砖覆盖。两个平铺不同,当且仅当面板上有四个方向上的相邻单元中的两个,使得恰好有一个平铺有一个瓷砖占据两个正方形。)
示例: 输入: 3 输出: 5 解释: 下面列出了五种不同的方法,不同字母代表不同瓷砖: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY
提示:
- N 的范围是
[1, 1000]
Runtime: 4 ms
Memory Usage: 19 MB
1 class Solution { 2 func numTilings(_ N: Int) -> Int { 3 switch N 4 { 5 case 0: 6 return 1 7 case 1,2: 8 return N 9 default: 10 break 11 } 12 var M:Int = Int(1e9) + 7 13 var dp:[Int] = [Int](repeating:0,count:N + 1) 14 dp[0] = 1 15 dp[1] = 1 16 dp[2] = 2 17 for i in 3...N 18 { 19 dp[i] = (dp[i - 1] * 2 + dp[i - 3]) % M 20 } 21 return dp[N] 22 } 23 }
4ms
1 class Solution { 2 func numTilings(_ N: Int) -> Int { 3 let MOD = 1000000007 4 if N == 1 { return 1 } 5 if N == 2 { return 2 } 6 var dp = [Int](repeating: 0, count: N+1) 7 dp[0] = 1; dp[1] = 1; dp[2] = 2 8 for i in 3...N { 9 dp[i] = (2*dp[i-1] + dp[i-3])%MOD 10 } 11 return dp[N] 12 } 13 }
原文地址:https://www.cnblogs.com/strengthen/p/10545719.html
时间: 2024-10-13 03:31:14