epoll使用具体解释(精髓)

epoll - I/O event notification facility

在linux的网络编程中,非常长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的优点在于它不会随着监听fd数目的增长而减少效率。由于在内核中的select实现中,它是採用轮询来处理的,轮询的fd数目越多,自然耗时越多。而且,在linux/posix_types.h头文件有这种声明:
#define __FD_SETSIZE    1024
表示select最多同一时候监听1024个fd,当然,能够通过改动头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常easy,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共同拥有多大。这个參数不同于select()中的第一个參数,给出最大监听的fd+1的值。须要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下假设查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注冊函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注冊要监听的事件类型。第一个參数是epoll_create()的返回值,第二个參数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注冊新的fd到epfd中;
EPOLL_CTL_MOD:改动已经注冊的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个參数是须要监听的fd,第四个參数是告诉内核须要监听什么事,struct epoll_event结构例如以下:

typedef union epoll_data {
    void *ptr;
    int fd;
    __uint32_t u32;
    __uint64_t u64;
} epoll_data_t;

struct epoll_event {
    __uint32_t events; /* Epoll events */
    epoll_data_t data; /* User data variable */
};

events能够是以下几个宏的集合:
EPOLLIN :表示相应的文件描写叙述符能够读(包含对端SOCKET正常关闭);
EPOLLOUT:表示相应的文件描写叙述符能够写;
EPOLLPRI:表示相应的文件描写叙述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示相应的文件描写叙述符错误发生;
EPOLLHUP:表示相应的文件描写叙述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:仅仅监听一次事件,当监听完这次事件之后,假设还须要继续监听这个socket的话,须要再次把这个socket加入到EPOLL队列里

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,相似于select()调用。參数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,參数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久堵塞)。该函数返回须要处理的事件数目,如返回0表示已超时。

4、关于ET、LT两种工作模式:
能够得出这种结论:
ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包含缓冲区中还有未处理的数据,也就是说,假设要採用ET模式,须要一直read/write直到出错为止,非常多人反映为什么採用ET模式仅仅接收了一部分数据就再也得不到通知了,大多由于这样;而LT模式是仅仅要有数据没有处理就会一直通知下去的.

那么到底怎样来使用epoll呢?事实上非常easy。
通过在包含一个头文件#include <sys/epoll.h> 以及几个简单的API将能够大大的提高你的网络server的支持人数。

首先通过create_epoll(int maxfds)来创建一个epoll的句柄,当中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的全部操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。

之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询全部的网络接口,看哪一个能够读,哪一个能够写了。主要的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
当中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存全部的读写事件。max_events是当前须要监听的全部socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示立即返回,为-1的时候表示一直等下去,直到有事件范围,为随意正整数的时候表示等这么长的时间,假设一直没有事件,则范围。一般假设网络主循环是单独的线程的话,能够用-1来等,这样能够保证一些效率,假设是和主逻辑在同一个线程的话,则能够用0来保证主循环的效率。

epoll_wait范围之后应该是一个循环,遍利全部的事件。

差点儿全部的epoll程序都使用以下的框架:

for( ; ; )
    {
        nfds = epoll_wait(epfd,events,20,500);
        for(i=0;i<nfds;++i)
        {
            if(events[i].data.fd==listenfd) //有新的连接
            {
                connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
                ev.data.fd=connfd;
                ev.events=EPOLLIN|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd加入到epoll的监听队列中
            }
            else if( events[i].events&EPOLLIN ) //接收到数据,读socket
            {
                n = read(sockfd, line, MAXLINE)) < 0    //读
                ev.data.ptr = md;     //md为自己定义类型,加入数据
                ev.events=EPOLLOUT|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//改动标识符,等待下一个循环时发送数据,异步处理的精髓
            }
            else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
            {
                struct myepoll_data* md = (myepoll_data*)events[i].data.ptr;    //取数据
                sockfd = md->fd;
                send( sockfd, md->ptr, strlen((char*)md->ptr), 0 );        //发送数据
                ev.data.fd=sockfd;
                ev.events=EPOLLIN|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //改动标识符,等待下一个循环时接收数据
            }
            else
            {
                //其它的处理
            }
        }
    }

以下给出一个完整的server端样例:


#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

using namespace std;

#define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000

void setnonblocking(int sock)
{
    int opts;
    opts=fcntl(sock,F_GETFL);
    if(opts<0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts|O_NONBLOCK;
    if(fcntl(sock,F_SETFL,opts)<0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }
}

int main(int argc, char* argv[])
{
    int i, maxi, listenfd, connfd, sockfd,epfd,nfds, portnumber;
    ssize_t n;
    char line[MAXLINE];
    socklen_t clilen;

if ( 2 == argc )
    {
        if( (portnumber = atoi(argv[1])) < 0 )
        {
            fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
            return 1;
        }
    }
    else
    {
        fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
        return 1;
    }

//声明epoll_event结构体的变量,ev用于注冊事件,数组用于回传要处理的事件

struct epoll_event ev,events[20];
    //生成用于处理accept的epoll专用的文件描写叙述符

epfd=epoll_create(256);
    struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    //把socket设置为非堵塞方式

//setnonblocking(listenfd);

//设置与要处理的事件相关的文件描写叙述符

ev.data.fd=listenfd;
    //设置要处理的事件类型

ev.events=EPOLLIN|EPOLLET;
    //ev.events=EPOLLIN;

//注冊epoll事件

epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
    bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    char *local_addr="127.0.0.1";
    inet_aton(local_addr,&(serveraddr.sin_addr));//htons(portnumber);

serveraddr.sin_port=htons(portnumber);
    bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
    listen(listenfd, LISTENQ);
    maxi = 0;
    for ( ; ; ) {
        //等待epoll事件的发生

nfds=epoll_wait(epfd,events,20,500);
        //处理所发生的全部事件

for(i=0;i<nfds;++i)
        {
            if(events[i].data.fd==listenfd)//假设新监測到一个SOCKET用户连接到了绑定的SOCKET端口,建立新的连接。

{
                connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
                if(connfd<0){
                    perror("connfd<0");
                    exit(1);
                }
                //setnonblocking(connfd);

char *str = inet_ntoa(clientaddr.sin_addr);
                cout << "accapt a connection from " << str << endl;
                //设置用于读操作的文件描写叙述符

ev.data.fd=connfd;
                //设置用于注測的读操作事件

ev.events=EPOLLIN|EPOLLET;
                //ev.events=EPOLLIN;

//注冊ev

epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
            }
            else if(events[i].events&EPOLLIN)//假设是已经连接的用户,而且收到数据,那么进行读入。

{
                cout << "EPOLLIN" << endl;
                if ( (sockfd = events[i].data.fd) < 0)
                    continue;
                if ( (n = read(sockfd, line, MAXLINE)) < 0) {
                    if (errno == ECONNRESET) {
                        close(sockfd);
                        events[i].data.fd = -1;
                    } else
                        std::cout<<"readline error"<<std::endl;
                } else if (n == 0) {
                    close(sockfd);
                    events[i].data.fd = -1;
                }
                line[n] = ‘/0‘;
                cout << "read " << line << endl;
                //设置用于写操作的文件描写叙述符

ev.data.fd=sockfd;
                //设置用于注測的写操作事件

ev.events=EPOLLOUT|EPOLLET;
                //改动sockfd上要处理的事件为EPOLLOUT

//epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);

}
            else if(events[i].events&EPOLLOUT) // 假设有数据发送

{
                sockfd = events[i].data.fd;
                write(sockfd, line, n);
                //设置用于读操作的文件描写叙述符

ev.data.fd=sockfd;
                //设置用于注測的读操作事件

ev.events=EPOLLIN|EPOLLET;
                //改动sockfd上要处理的事件为EPOLIN

epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
            }
        }
    }
    return 0;
}

client直接连接到这个server就好了。。

引用:http://blog.chinaunix.net/u/16292/showart_1844376.html

时间: 2024-11-16 18:53:29

epoll使用具体解释(精髓)的相关文章

epoll编程

包含头文件: #include <sys/epoll.h> epoll的接口非常简单,一共就三个函数:1. int epoll_create(int size);创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大. 2.int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件

epoll使用详解(精髓)

epoll - I/O event notification facility 在linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中,有了一种替换它的机制,就是epoll.相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率.因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多.并且,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE   

epoll使用详解(精髓)(转)

epoll - I/O event notification facility 在linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中,有了一种替换它的机制,就是epoll.相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率.因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多.并且,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE   

select和epoll解释

转载地址:http://yaocoder.blog.51cto.com/2668309/888374 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象. 不管是文件,还是套接字,还是管道,我们都可以把他们看作流. 之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据:通过write,我们可以往流写入数据.现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回

select,poll,epoll最简单的解释

从事服务端开发,少不了要接触网络编程.epoll 作为 Linux 下高性能网络服务器的必备技术至关重要,nginx.Redis.Skynet 和大部分游戏服务器都使用到这一多路复用技术. epoll 很重要,但是 epoll 与 select 的区别是什么呢?epoll 高效的原因是什么? 网上虽然也有不少讲解 epoll 的文章,但要么是过于浅显,或者陷入源码解析,很少能有通俗易懂的.笔者于是决定编写此文,让缺乏专业背景知识的读者也能够明白 epoll 的原理. 文章核心思想是:要让读者清晰

Linux IO模式和select,poll,epoll解释

一些概念: 虚拟空间:是进程所看到的所有地址组成的空间.虚拟空间某个进程对所有分配给它的所有物理地址的重新映射. 寻址返回与计算机的位数有关系.分为内核空间与用户空间.针对32位的Linux系统,最高的1G字节为内核空间.最低的3G字节为用户空间. 进程阻塞:这是进程自身的一种主动行为.当进程进入阻塞状态的时候,不占用CPU资源. 文件描述符fd:非负整数,是一个索引值.指向内核为每一个进程所维护的该进程的打开文件记录表. 缓存IO:大多数文件系统的默认IO都是缓存IO.过程是:数据先被拷贝到操

epoll的两种触发模式

epoll有两种模式,Edge Triggered(简称ET) 和 Level Triggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的select/poll操作,只要还有没有处理的事件就会一直通知. 以代码来说明问题: 首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据: Java代码   #include <

epoll的两种工作模式

epoll有两种模式,Edge Triggered(简称ET) 和 Level Triggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的select/poll操作,只要还有没有处理的事件就会一直通知. 以代码来说明问题: 首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据: Java代码   #include <

做预解释题的一点小方法和小技巧

在JavaScript中的函数理解中预解释是一个比较难懂的话题.原理虽然简单,寥寥数言,但其内涵却有深意,精髓难懂.如何在轻松活跃的头脑中将它学会,现在针对我在学习中的一点小窍门给大家分享一下,希望能给大家一些帮助: 万事需遵循"原理"--"预解释"无节操和"this"指向:(可先看例题解析然后结合原理进行学习) (感谢蕾蕾老师给归纳的预解释无节操原理:) 如果函数传参数则先于以下执行,就相当于在函数私有作用域下var了一个变量:根据作用域原理,