哈夫曼编码

   1、问题描述

哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。

有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。

前缀码对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。

译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。

从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。

给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c在树T中的深度记为dT(c)。dT(c)也是字符c的前缀码长。则平均码长定义为:使平均码长达到最小的前缀码编码方案称为C的最优前缀码

 2、构造哈弗曼编码

哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。其构造步骤如下:

(1)哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。

(2)算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。

(3)假设编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只剩下一棵树,即所要求的树T。

构造过程如图所示:

时间: 2024-10-03 12:05:21

哈夫曼编码的相关文章

基于python的二元霍夫曼编码译码详细设计

一.设计题目 对一幅BMP格式的灰度图像(个人证件照片)进行二元霍夫曼编码和译码 二.算法设计 (1)二元霍夫曼编码: ①:图像灰度处理: 利用python的PIL自带的灰度图像转换函数,首先将彩色图片转为灰度的bmp图像,此时每个像素点可以用单个像素点来表示. ②:二元霍夫曼编码: 程序流程图: 详细设计: 统计像素点频率,首先通过python自带的PIL库的图像像素点读取函数read()获取灰度图像的所有像素点,通过循环遍历每个像素点,将每个出现的像素点值以及其次数以键值对的形式放入到pyt

霍夫曼编码求节省空间

霍夫曼编码将频繁出现的字符采用短编码,出现频率较低的字符采用长编码.具体的操作过程为:i)以每个字符的出现频率作为关键字构建最小优先级队列:ii)取出关键字最小的两个结点生成子树,根节点的关键字为孩子节点关键字之和,并将根节点插入到最小优先级队列中,直至得到一棵最优编码树. 霍夫曼编码方案是基于______策略的.用该方案对包含a到f6个字符的文件进行编码,文件包含100000个字符,每个字符的出现频率(用百分比表示)如表1-3所示,则与固定长度编码相比,该编码方案节省了______存储空间.

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 术语: i)路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径. 路径中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. ii)结点的权及带权路径长度 若对树中的每个结点赋给一个有着某种含义的数值,则这个数值称为该结点的权. 结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. iii)树的带权路径长度 树的带权路径长度:所有叶子结点的带权路径长度之和,记为WPL. 先了解一下

《数据结构复习笔记》--哈夫曼树,哈夫曼编码

先来了解一下哈夫曼树. 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 wk,从根结点到每个叶子结点的长度为 lk,则每个叶子结点的带权路径长度之和就是: 最优二叉树或哈夫曼树: WPL最小的二叉树. [例]有五个叶子结点,它们的权值为{1,2,3,4,5},用此权值序列可以构造出形状不同的多个二叉树. 其中结果wpl最小值的是:33=(1+2)*3+(3)*2+(4+5)*2: 哈夫曼树的构造: 每次把权值最小的两棵二叉树合并, 代码: typedef struct Tr

C语言之霍夫曼编码学习

?1,霍夫曼编码描述哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩. 在计算机信息处理中,"哈夫曼编码"是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩.这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码.这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目

数据结构课程设计-哈夫曼编码译码

//******************************************** //程序功能:哈夫曼编码及译码 // //日期:2014年11月18 // //******************************************** #include<stdio.h> #include<stdlib.h> #include<string.h> #include <windows.h> #define MAX 128 //叶子节点

哈夫曼编码(Huffman coding)的那些事,(编码技术介绍和程序实现)

前言 哈夫曼编码(Huffman coding)是一种可变长的前缀码.哈夫曼编码使用的算法是David A. Huffman还是在MIT的学生时提出的,并且在1952年发表了名为<A Method for the Construction of Minimum-Redundancy Codes>的文章.编码这种编码的过程叫做哈夫曼编码,它是一种普遍的熵编码技术,包括用于无损数据压缩领域.由于哈夫曼编码的运用广泛,本文将简要介绍: 哈夫曼编码的编码(不包含解码)原理 代码(java)实现过程 一

基于哈夫曼编码的文件压缩(c++版)

本博客由Rcchio原创 我了解到很多压缩文件的程序是基于哈夫曼编码来实现的,所以产生了自己用哈夫曼编码写一个压缩软件的想法,经过查阅资料和自己的思考,我用c++语言写出了该程序,并通过这篇文章来记录一下自己写该程序学到的东西.因为本人写的程序在压缩率上,还有提升的空间,所以本文将不定期更新,但程序整体的思路不会有较大的改动. 一.基于哈夫曼编码可实现压缩文件的原理分析 在计算机中,数据的存储都是二进制的,并且以字节作为基本的存储单位,像英文字母在文本中占一个字节,汉字占两个字节,我们把这种每一

哈夫曼编码和译码

构建哈夫曼原理:(每个元素都是叶子结点,N 个元素共有 2N-1 个结点) 有 N 个带权值的结点,将其按以下方法构建:①②③ ①选取 N 个结点集合中最小的两个权值结点构造成一个新的二叉树,且设置新结点的权值为左右孩子权值之和 ②将以上选取的两个最小权值结点从原集合中删除,向集合中加入 这两个结点的跟,即 1 中创建的新结点,此时集合 元素为 N = N - 2 + 1;  ③重复 ① ② 直到只剩下一个结点,该结点就是构建的二叉树的根 哈夫曼编码原理: 在哈夫曼树中,凡是左分支,即左孩子的全

机智零崎不会没梗Ⅱ (哈夫曼编码、优先队列)

题目描述 你满心欢喜的召唤出了外星生物,以为可以变身超人拥有强大力量战胜一切怪兽,然而面对着身前高大的外星生物你一脸茫然,因为,你懂M78星云语吗?不过不用担心,因为零崎非常机智,他给出了关键性的提示:“讲道理,日语可是全宇宙通用语,所以为什么不试试和外星人讲日语呢?” 不过现在外星生物说的话都是“[email protected]#$%^&%#%I&!……”这样的东西,你要怎么转换成日语呢? 作位全宇宙通用的日语,自然有一套万能的转换算法,那就是Huffman编码转换!当然了这肯定不是普