Android,谁动了我的内存

一、 Android的内存机制

Android的程序由Java语言编写,所以Android的内存管理与Java的内存管理相似。程序员通过new为对象分配内存,所有对象在java堆内分配空间;然而对象的释放是由垃圾回收器来完成的。C/C++中的内存机制是“谁污染,谁治理”,java的就比较人性化了,给我们请了一个专门的清洁工(GC)。

那么GC怎么能够确认某一个对象是不是已经被废弃了呢?Java采用了有向图的原理。Java将引用关系考虑为图的有向边,有向边从引用者指向引用对象。线程对象可以作为有向图的起始顶点,该图就是从起始顶点开始的一棵树,根顶点可以到达的对象都是有效对象,GC不会回收这些对象。如果某个对象 (连通子图)与这个根顶点不可达(注意,该图为有向图),那么我们认为这个(这些)对象不再被引用,可以被GC回收。

二、Android的内存溢出

Android的内存溢出是如何发生的?

Android的虚拟机是基于寄存器的Dalvik,它的最大堆大小一般是16M,有的机器为24M。因此我们所能利用的内存空间是有限的。如果我们的内存占用超过了一定的水平就会出现OutOfMemory的错误。

为什么会出现内存不够用的情况呢?我想原因主要有两个:

  • 由于我们程序的失误,长期保持某些资源(如Context)的引用,造成内存泄露,资源造成得不到释放。
  • 保存了多个耗用内存过大的对象(如Bitmap),造成内存超出限制。

三、万恶的static

static是Java中的一个关键字,当用它来修饰成员变量时,那么该变量就属于该类,而不是该类的实例。所以用static修饰的变量,它的生命周期是很长的,如果用它来引用一些资源耗费过多的实例(Context的情况最多),这时就要谨慎对待了。

public class ClassName {  

     private static Context mContext;  

     //省略  

}  

以上的代码是很危险的,如果将Activity赋值到么mContext的话。那么即使该Activity已经onDestroy,但是由于仍有对象保存它的引用,因此该Activity依然不会被释放。

我们举Android文档中的一个例子。

private static Drawable sBackground;  

 @Override
 protected void onCreate(Bundle state) {
   super.onCreate(state);  

   TextView label = new TextView(this);
   label.setText("Leaks are bad");  

   if (sBackground == null) {
     sBackground = getDrawable(R.drawable.large_bitmap);
   }
   label.setBackgroundDrawable(sBackground);  

   setContentView(label);
 } 

sBackground, 是一个静态的变量,但是我们发现,我们并没有显式的保存Contex的引用,但是,当Drawable与View连接之后,Drawable就将View设置为一个回调,由于View中是包含Context的引用的,所以,实际上我们依然保存了Context的引用。这个引用链如下:

Drawable->TextView->Context

所以,最终该Context也没有得到释放,发生了内存泄露。

如何才能有效的避免这种引用的发生呢?

第一,应该尽量避免static成员变量引用资源耗费过多的实例,比如Context。

第二、Context尽量使用Application Context,因为Application的Context的生命周期比较长,引用它不会出现内存泄露的问题。

第三、使用WeakReference代替强引用。比如可以使用WeakReference<Context> mContextRef;

该部分的详细内容也可以参考Android文档中Article部分。

四、都是线程惹的祸

线程也是造成内存泄露的一个重要的源头。线程产生内存泄露的主要原因在于线程生命周期的不可控。我们来考虑下面一段代码。

public class MyActivity extends Activity {
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        new MyThread().start();
    }  

    private class MyThread extends Thread{
        @Override
        public void run() {
            super.run();
            //do somthing
        }
    }
}  

这段代码很平常也很简单,是我们经常使用的形式。我们思考一个问题:假设MyThread的run函数是一个很费时的操作,当我们开启该线程后,将设备的横屏变为了竖屏,一般情况下当屏幕转换时会重新创建Activity,按照我们的想法,老的Activity应该会被销毁才对,然而事实上并非如此。

由于我们的线程是Activity的内部类,所以MyThread中保存了Activity的一个引用,当MyThread的run函数没有结束时,MyThread是不会被销毁的,因此它所引用的老的Activity也不会被销毁,因此就出现了内存泄露的问题。

有些人喜欢用Android提供的AsyncTask,但事实上AsyncTask的问题更加严重,Thread只有在run函数不结束时才出现这种内存泄露问题,然而AsyncTask内部的实现机制是运用了ThreadPoolExcutor,该类产生的Thread对象的生命周期是不确定的,是应用程序无法控制的,因此如果AsyncTask作为Activity的内部类,就更容易出现内存泄露的问题。

这种线程导致的内存泄露问题应该如何解决呢?

第一、将线程的内部类,改为静态内部类。

第二、在线程内部采用弱引用保存Context引用。

解决的模型如下:

public abstract class WeakAsyncTask<Params, Progress, Result, WeakTarget> extends
        AsyncTask<Params, Progress, Result> {
    protected WeakReference<WeakTarget> mTarget;  

    public WeakAsyncTask(WeakTarget target) {
        mTarget = new WeakReference<WeakTarget>(target);
    }  

    /** {@inheritDoc} */
    @Override
    protected final void onPreExecute() {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            this.onPreExecute(target);
        }
    }  

    /** {@inheritDoc} */
    @Override
    protected final Result doInBackground(Params... params) {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            return this.doInBackground(target, params);
        } else {
            return null;
        }
    }  

    /** {@inheritDoc} */
    @Override
    protected final void onPostExecute(Result result) {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            this.onPostExecute(target, result);
        }
    }  

    protected void onPreExecute(WeakTarget target) {
        // No default action
    }  

    protected abstract Result doInBackground(WeakTarget target, Params... params);  

    protected void onPostExecute(WeakTarget target, Result result) {
        // No default action
    }
}  

事实上,线程的问题并不仅仅在于内存泄露,还会带来一些灾难性的问题。由于本文讨论的是内存问题,所以在此不做讨论。

五、超级大胖子Bitmap

可以说出现OutOfMemory问题的绝大多数人,都是因为Bitmap的问题。因为Bitmap占用的内存实在是太多了,它是一个“超级大胖子”,特别是分辨率大的图片,如果要显示多张那问题就更显著了。

如何解决Bitmap带给我们的内存问题?

第一、及时的销毁。

虽然,系统能够确认Bitmap分配的内存最终会被销毁,但是由于它占用的内存过多,所以很可能会超过java堆的限制。因此,在用完Bitmap时,要及时的recycle掉。recycle并不能确定立即就会将Bitmap释放掉,但是会给虚拟机一个暗示:“该图片可以释放了”。

第二、设置一定的采样率。

有时候,我们要显示的区域很小,没有必要将整个图片都加载出来,而只需要记载一个缩小过的图片,这时候可以设置一定的采样率,那么就可以大大减小占用的内存。如下面的代码:

 private ImageView preview;
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inSampleSize = 2;//图片宽高都为原来的二分之一,即图片为原来的四分之一
 Bitmap bitmap = BitmapFactory.decodeStream(cr.openInputStream(uri), null, options);
preview.setImageBitmap(bitmap); 

第三、巧妙的运用软引用(SoftRefrence)

有些时候,我们使用Bitmap后没有保留对它的引用,因此就无法调用Recycle函数。这时候巧妙的运用软引用,可以使Bitmap在内存快不足时得到有效的释放。如下例:

/**本例子为博主随手一写,来说明用法,并未验证*/
private class MyAdapter extends BaseAdapter {  

    private ArrayList<SoftReference<Bitmap>> mBitmapRefs = new ArrayList<SoftReference<Bitmap>>();
    private ArrayList<Value> mValues;
    private Context mContext;
    private LayoutInflater mInflater;  

    MyAdapter(Context context, ArrayList<Value> values) {
        mContext = context;
        mValues = values;
        mInflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
    }
    public int getCount() {
        return mValues.size();
    }  

    public Object getItem(int i) {
        return mValues.get(i);
    }  

    public long getItemId(int i) {
        return i;
    }  

    public View getView(int i, View view, ViewGroup viewGroup) {
        View newView = null;
        if(view != null) {
            newView = view;
        } else {
            newView =(View)mInflater.inflate(R.layout.image_view, false);
        }  

        Bitmap bitmap = BitmapFactory.decodeFile(mValues.get(i).fileName);
        mBitmapRefs.add(new SoftReference<Bitmap>(bitmap));     //此处加入ArrayList
        ((ImageView)newView).setImageBitmap(bitmap);  

        return newView;
    }
}  

六、行踪诡异的Cursor

Cursor是Android查询数据后得到的一个管理数据集合的类,正常情况下,如果查询得到的数据量较小时不会有内存问题,而且虚拟机能够保证Cusor最终会被释放掉。

然而如果Cursor的数据量特表大,特别是如果里面有Blob信息时,应该保证Cursor占用的内存被及时的释放掉,而不是等待GC来处理。并且Android明显是倾向于编程者手动的将Cursor close掉,因为在源代码中我们发现,如果等到垃圾回收器来回收时,会给用户以错误提示。

所以我们使用Cursor的方式一般如下:

Cursor cursor = null;
try {
    cursor = mContext.getContentResolver().query(uri,null, null,null,null);
    if(cursor != null) {
        cursor.moveToFirst();
        //do something
    }
} catch (Exception e) {
    e.printStackTrace();
} finally {
    if (cursor != null) {
       cursor.close();
    }
}  

有一种情况下,我们不能直接将Cursor关闭掉,这就是在CursorAdapter中应用的情况,但是注意,CursorAdapter在Acivity结束时并没有自动的将Cursor关闭掉,因此,你需要在onDestroy函数中,手动关闭。

@Override
protected void onDestroy() {
    if (mAdapter != null && mAdapter.getCurosr() != null) {
        mAdapter.getCursor().close();
    }
    super.onDestroy();
}  

CursorAdapter中的changeCursor函数,会将原来的Cursor释放掉,并替换为新的Cursor,所以你不用担心原来的Cursor没有被关闭。

你可能会想到使用Activity的managedQuery来生成Cursor,这样Cursor就会与Acitivity的生命周期一致了,多么完美的解决方法!然而事实上managedQuery也有很大的局限性。

managedQuery生成的Cursor必须确保不会被替换,因为可能很多程序事实上查询条件都是不确定的,因此我们经常会用新查询的Cursor来替换掉原先的Cursor。因此这种方法适用范围也是很小。

七、其它要说的。

其实,要减小内存的使用,其实还有很多方法和要求。比如不要使用整张整张的图,尽量使用9path图片。Adapter要使用convertView等等,好多细节都可以节省内存。这些都需要我们去挖掘,谁叫Android的内存不给力来着。

时间: 2024-10-15 22:14:08

Android,谁动了我的内存的相关文章

Android的内存优化

腾讯公司在五月三十一日开展[腾讯Bugly移动开发者沙龙]大会,大会上面叶方正老师讲解了 关于Android的内存优化的问题,不过我感觉叶老师更多的站在了测试的角度上去解释了这一方面,叶老师给我们介绍了很多的工具去测试Android应用在各种情况下的内存占用情况,不过好像对我们开发的帮助并不是特别的大.我在这里总结叶老师所说的重点和自己对内存优化的一些理解,希望能够对大家有所帮助. Android应用优化主要集中在内存和UI流畅度上,从内存占用与泄露.UI流畅度的帧数和响应时间到IO的阻塞式响应

Android dumpsys 内存分析

研究了Mat和Heap的分析方法之后,尝试用其他的方式来分析下,Androiddumpsys 的方式来看下结果. 如何得出数据的操作就不说了,网上太多了,只看数据来进行分析. 如图1,启动的时候的情况 执行三次怀疑有泄露的功能之后的数据 再执行三次 再执行三次 数据分析: Native 数据代表的是JNI层的数据,从mallinfo usmblks 获得 DalviK 数据代表的是Java层的数据,从Runtime Totalmemory获得 Size 代表是能获得的最大的数据 Alloc代表的

Android清理设备内存详细完整示例(一)

MainActivity如下: package come.on; import android.app.Activity; import android.content.Context; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; i

Android高效内存之让你的图片省内存

Android高效内存之让你的图片省内存 在做内存优化的时候,我们发现除了解决内存泄露问题,剩下的就只有想办法减少真实的内存占用.而在App中,大部分内存可能被我们图片占用了,所以减少图片的内存占用可以带来直接的效果. 一.一张图片到底占用多少内存 我们先假设我们有一张图片是600 * 800像素的,图片磁盘占用空间大小假设是 100KB. 图片内存大小跟磁盘占用空间大小有什么关系? 磁盘占用空间的大小不是图片占用内存的大小,磁盘占用空间是在磁盘上存储图片需要的一个空间大小,内存大小是加载到内存

Android App 内存泄露之Thread

Thread 内存泄露 线程也是造成内存泄露的一个重要的源头.线程产生内存泄露的主要原因在于线程生命周期的不可控. 1.看一下下面是否存在问题 <span style="white-space:pre"> </span>/** * * @version 1.0.0 * @author Abay Zhuang <br/> * Create at 2014-7-17 */ public class ThreadActivity extends Activ

Android清理设备内存详细完整示例(二)

MainActivity如下: package cc.c; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.List; import android.app.Activity; import android.app.ActivityManager; import android.app.ActivityManager.MemoryInfo;

如何偷Android的内存-Tricking Android MemoryFile

之前在做一个内存优化的时候,使用到了MemoryFile,由此发现了MemoryFile的一些特性以及一个非常trickly的使用方法,因此在这里记录一下 What is it MemoryFile是android在最开始就引入的一套框架,其内部实际上是封装了android特有的内存共享机制Ashmem匿名共享内存,简单来说,Ashmem在Android内核中是被注册成一个特殊的字符设备,Ashmem驱动通过在内核的一个自定义slab缓冲区中初始化一段内存区域,然后通过mmap把申请的内存映射到

Android Dalvikvm 内存管理理解

网上很多文件介绍了 jvm 内存管理的理论,但在 Dalvikvm 中,究竟是如何实现的. 这几天猛看了 Dalvikvm 的源代码,说一下我的理解: 在大层面上讲跟理论一样,jvm 把内存分成了一些区, 关于各区的说明参见. http://blog.csdn.net/lengyuhong/article/details/5953544 对于hello world 这样简单程序,发现dalvikvm也就用了一个heap, 就是Eden区了. dalvikvm 使用 mmap 创建共享内存(堆是多

在Eclipse中使用MAT分析Android程序内存使用状况(转)

对于Android这种手持设备来说,通常不会带有太大的内存,而且一般用户都是长时间不重启手机,所以编写程序的时候必须要非常小心的使用内存,尽量避免有内存泄露的问题出现.通常分析程序中潜在内存泄露的问题是一件很有难度的工作,一般都是由团队中的资深工程师负责,而且随着程序代码量的提高,难度还会逐步加大. 今天要介绍一个在Eclipse中使用的内存分析工具——MAT(Eclipse Memory Analyzer,主页在http://www.eclipse.org/mat/).它是一个功能非常丰富的J