本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
Unique Paths II
Total Accepted: 13655 Total
Submissions: 49081My Submissions
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
题意:给定一个 m * n 的网格,网格中1表示障碍,不可走;0表示可走。
一个机器人要从左上角走到右下角,每次只能向下或向右移动一个位置,
问有多少种走法
思路1:记忆化搜索
使用一个两维 paths[i][j]记录 (i,j)到(m,n)的路径数
先把 paths 数组里的所有元素都置为 -1,表示之前没有搜索过(i,j)到(m,n)的路径
再把 obstacleGrid[i][j] 数组里为 1的对应 paths[i][j] 转为 0,表示从(i,j)到不了(m,n)
用 dfs 去枚举各种可能的路径情况
复杂度:时间 O(2^n) 空间O(n)
思路2:dp
用 f[i][j] 表示从 (0,0)到 (i, j)的路径数,则状态转移方程为
f[i][j] = f[i - 1][j] + f[i][j - 1]
实现的时候,可以只用一个一维的数组paths[j]表示外循环第i次迭代内循环第j次迭代对应的paths值
在还没更新状态时,paths[j]对应f[i - 1][j]; paths[j - 1]对应f[i][j - 1]
复杂度:时间 O(n),空间O(n)
int paths[101][101]; int mm, nn; int dfs(int x, int y){ if(x >= mm || y >= nn) return 0; if(paths[x][y] >= 0) return paths[x][y]; if(x == mm - 1 && y == nn - 1) return 1; return paths[x][y] = dfs(x + 1, y) + dfs(x, y + 1); } int uniquePathsWithObstacles(vector<vector<int> >&obstacleGrid){ mm = obstacleGrid.size(), nn = obstacleGrid[0].size(); memset(paths, -1, sizeof(paths)); for(unsigned int i = 0; i < obstacleGrid.size(); ++i) for(unsigned int j = 0; j < obstacleGrid[0].size(); ++j){ if(obstacleGrid[i][j] == 1) paths[i][j] = 0; } return dfs(0, 0); } int paths[101]; int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid){ memset(paths, 0, sizeof(paths)); int m = obstacleGrid.size(), n = obstacleGrid[0].size(); if(obstacleGrid[0][0] || obstacleGrid[m- 1][n - 1]) return 0; paths[0] = obstacleGrid[0][0] ? 0 : 1; for(int i = 0 ; i < m; ++i){ for(int j = 0; j < n; ++j){ if(obstacleGrid[i][j] ) paths[j] = 0; else paths[j] = obstacleGrid[i][j] ? 0 : ( j == 0 ? 0: paths[j - 1]) + paths[j]; } } return paths[n - 1]; }