POJ 1995 Raising Modulo Numbers (数论-整数快速幂)

Raising Modulo Numbers

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4379   Accepted: 2516

Description

People are different. Some secretly read magazines full of interesting girls‘ pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment
was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:

Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players
including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players‘ experience it is possible to increase the difficulty by choosing higher numbers.

You should write a program that calculates the result and is able to find out who won the game.

Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be
divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13

Source

CTU Open 1999

题目大意:

T组测试数据,求(A1B1+A2B2+ ... +AHBH)mod M.

解题思路:

对于普通暴力算法一定是

A1*A1*A1.....*A1 乘以 B1次,

A2*A2...........*A2  乘以 B2次,

......................................

然后全部相加起来,这样效率很低,肯定是超时了

那么有什么办法解决这一问题,可以用快速幂,

如果 A1^2有了,那么 A1^4就可以得到,A1^8也可以得到,...... ,立刻由n降到了lgn

可以用位运算来模拟。

解题代码:

#include <iostream>
#include <cstdio>
using namespace std;

typedef long long ll;

ll a,b,mod;

void solve(){
    ll ans=0;
    int m;
    scanf("%d",&m);
    while(m-- >0){
        scanf("%lld%lld",&a,&b);
        ll sum=1;
        while(b>0){
            if(b&1) sum=(sum*a)%mod;
            a=(a*a)%mod;
            b/=2;
        }
        ans=(ans+sum)%mod;
    }
    cout<<ans<<endl;
}

int main(){
    int t;
    cin>>t;
    while(t-- >0){
        scanf("%lld",&mod);
        solve();
    }
    return 0;
}

POJ 1995 Raising Modulo Numbers (数论-整数快速幂)

时间: 2024-10-11 04:53:33

POJ 1995 Raising Modulo Numbers (数论-整数快速幂)的相关文章

POJ1995 Raising Modulo Numbers【整数快速幂】

题目链接: http://poj.org/problem?id=1995 题目大意: N个人在一起玩游戏,每个人默写两个数字Ai.Bi,在同一个时间公开给其他玩家看.游戏的目的是 为了看谁能够在最快的时间求出所有的Ai^Bi的和对M取模的值.那么问题来了:你能够快速算出 (A1B1+A2B2+ ... +AHBH)mod M 的值吗? 思路: 用二分整数快速幂算法计算出每一个Ai^Bi,然后依次相加取模. AC代码: #include<iostream> #include<algorit

POJ 1995 Raising Modulo Numbers 【快速幂取模】

题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> long long quick_mod(long long a,long long b,long long c) { long long ans=1; while(b) { if(b&1) { ans=ans*a%c; } b>>=1; a=a*a%c; } return ans; } int

POJ 1995 Raising Modulo Numbers (快速幂模板)

Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4938   Accepted: 2864 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth

poj 1995 Raising Modulo Numbers

Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4987   Accepted: 2887 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth

poj 1995 Raising Modulo Numbers 题解

Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: 3740 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth

Raising Modulo Numbers 取模+快速幂

Raising Modulo Numbers 题目地址:http://poj.org/problem?id=1995 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult

POJ 1995 Raising Modulo Numbers(快速幂)

嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: 1 #include<cstdio> 2 #include<iostream> 3 4 using namespace std; 5 6 int main(){ 7 long long N, M, n, a, b, c, sum = 0; 8 scanf("%lld", &N); 9 while(N--){ 10 scanf("%ll

poj 1995 Raising Modulo Numbers 二分快速幂

题意:给定n对Ai,Bi,求所有Ai的Bi次方之和对M取模的结果: 思路:二分法求快速幂: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; __int64 sum,x,y,t; __int64 mod(__int64 a,__int64 b,__int64 c) { if(b==0) return 1%c; if(b==1) return a%c; t=mod(a,b

POJ 1995 Raising Modulo Numbers (快速幂取余)

#include<iostream> using namespace std; int quick_mod(int a,int b,int m) //模板 { a=a%m; int ans=1; while(b) { if(b&1) { ans=(ans*a)%m; } b>>=1; a=(a*a)%m; } return ans; } int main() { int size; cin>>size; int m, h, a, b; while(cin>