题目链接:传送门
题目大意:给你一个 n(1 <= n <= 1e11),问1~n中素数个数
题目思路:(Meisell-Lehmer算法)
1 #include<cstdio> 2 #include<cmath> 3 using namespace std; 4 #define LL long long 5 const int N = 5e6 + 2; 6 bool np[N]; 7 int prime[N], pi[N]; 8 int getprime() 9 { 10 int cnt = 0; 11 np[0] = np[1] = true; 12 pi[0] = pi[1] = 0; 13 for(int i = 2; i < N; ++i) 14 { 15 if(!np[i]) prime[++cnt] = i; 16 pi[i] = cnt; 17 for(int j = 1; j <= cnt && i * prime[j] < N; ++j) 18 { 19 np[i * prime[j]] = true; 20 if(i % prime[j] == 0) break; 21 } 22 } 23 return cnt; 24 } 25 const int M = 7; 26 const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17; 27 int phi[PM + 1][M + 1], sz[M + 1]; 28 void init() 29 { 30 getprime(); 31 sz[0] = 1; 32 for(int i = 0; i <= PM; ++i) phi[i][0] = i; 33 for(int i = 1; i <= M; ++i) 34 { 35 sz[i] = prime[i] * sz[i - 1]; 36 for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1]; 37 } 38 } 39 int sqrt2(LL x) 40 { 41 LL r = (LL)sqrt(x - 0.1); 42 while(r * r <= x) ++r; 43 return int(r - 1); 44 } 45 int sqrt3(LL x) 46 { 47 LL r = (LL)cbrt(x - 0.1); 48 while(r * r * r <= x) ++r; 49 return int(r - 1); 50 } 51 LL getphi(LL x, int s) 52 { 53 if(s == 0) return x; 54 if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s]; 55 if(x <= prime[s]*prime[s]) return pi[x] - s + 1; 56 if(x <= prime[s]*prime[s]*prime[s] && x < N) 57 { 58 int s2x = pi[sqrt2(x)]; 59 LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2; 60 for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]]; 61 return ans; 62 } 63 return getphi(x, s - 1) - getphi(x / prime[s], s - 1); 64 } 65 LL getpi(LL x) 66 { 67 if(x < N) return pi[x]; 68 LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1; 69 for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1; 70 return ans; 71 } 72 LL lehmer_pi(LL x) 73 { 74 if(x < N) return pi[x]; 75 int a = (int)lehmer_pi(sqrt2(sqrt2(x))); 76 int b = (int)lehmer_pi(sqrt2(x)); 77 int c = (int)lehmer_pi(sqrt3(x)); 78 LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2; 79 for (int i = a + 1; i <= b; i++) 80 { 81 LL w = x / prime[i]; 82 sum -= lehmer_pi(w); 83 if (i > c) continue; 84 LL lim = lehmer_pi(sqrt2(w)); 85 for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1); 86 } 87 return sum; 88 } 89 int main() 90 { 91 init(); 92 LL n; 93 while(~scanf("%lld",&n)) 94 { 95 printf("%lld\n",lehmer_pi(n)); 96 } 97 return 0; 98 }
时间: 2024-10-10 09:42:13