哈夫曼(Huffman)树和哈夫曼编码

一、哈夫曼(Huffman)树和哈夫曼编码

1.哈夫曼树(Huffman)又称最优二叉树,是一类带权路径长度最短的树, 常用于信息检测。

定义:

结点间的路径长度:树中一个结点到另一个结点之间分支数目称为这对结点之间的路径长度。

树的路径长度:树的根结点到树中每一结点的路径长度之和。

带权路径长度:从根结点到某结点的路径长度与该结点上权的乘积。

树的带权路径长度:树中所有叶子结点的带权路径长度之和记为WPL。

例如:

对图(a): WPL =9×2+5×2+2×2+3×2=38

对图(b): WPL =3×2+9×3+5×3+2×1=50

对图(c): WPL =9×1+5×2+2×3+3×3=34

总结:

路径长度最短的二叉树,其带权路径长度不一定最短;

带权路径最短的二叉树,其结点权值越大离根越近;

2. 哈夫曼树的构造

(1) 根据给定的 n个权值{W1 ,W2 ,…,Wn }构成n棵二叉树的集合F={T1 ,T 2 ,…,Tn },其中每棵二叉树中只有一个带权为Wi 的根结点。

(2) 在 F中选择两棵根结点最小的树作为左、右子树构造一棵新的二叉树T, 且置新的二叉树的根结点的权值为其左、右子树上根结点的权值之和。

(3) 将新二叉树T加入二叉树集合 F中,从二叉树集合F中 去除原来两棵根结点权    值最小的树。

(4) 重复(2)和(3)步直到 F 中只含有一棵树为止,这棵树就是哈夫曼树。

3. 哈夫曼编码

树中从根到每个叶子节点都有一条路径,对路径上的各分支约定指向左子树的分支表示”0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为各个叶子节点对应的字符编码,即是哈夫曼编码。

利用哈夫曼树,不仅能构造出前缀编码,而且还能使电文编码的总长度最短。

拿图例子来说:

A,B,C,D对应的哈夫曼编码分别为:111,10,110,0

原文地址:https://www.cnblogs.com/blancheiii/p/9880234.html

时间: 2024-10-05 05:32:28

哈夫曼(Huffman)树和哈夫曼编码的相关文章

哈夫曼(Huffman)树与哈夫曼编码

声明:原创作品,转载时请注明文章来自SAP师太技术博客:www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将追究法律责任!原文链接:http://www.cnblogs.com/jiangzhengjun/p/4289610.html 哈夫曼树又称最优二叉树,是一种带权路径长最短的树.树的路径长度是从树根到每一个叶子之间的路径长度之和.节点的带树路径长度为从该节点到树根之间的路径长度与该节点权(比如字符在某串中的使用频率)的乘积. 比如有一串字符串如

哈夫曼 (Huffman) 树的动画演示

 哈夫曼 (Huffman) 树的动画演示: http://people.cs.pitt.edu/~kirk/cs1501/animations/Huffman.html 此网站中亦有诸多其它算法的动画演示,可供学习算法或是数据结构相关内容时参考.

哈夫曼树和哈夫曼编码

在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN)树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如JPEG中就应用了哈夫曼编码. 首先介绍什么是哈夫曼树. 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数).树的带权路径长度记为WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值W

HUFFMAN 树

在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN) 树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码. 首先介绍什么是哈夫曼树.哈夫曼树又称最优二叉树, 是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点 的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度 为叶结点的层数).树的带权路径长度记为WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln) ,

Huffman树及其应用

哈夫曼树又称为最优二叉树,哈夫曼树的一个最主要的应用就是哈夫曼编码,本文通过简单的问题举例阐释哈夫曼编码的由来,并用哈夫曼树的方法构造哈夫曼编码,最终解决问题来更好的认识哈夫曼树的应用--哈夫曼编码. 一.引子 在学习中我们经常遇到将各科成绩改为优秀.良好.中等.及格和不及格.那么根据分级原理,代码表示为: if(a<60) b = "不及格"; else if(a<70) b = "及格"; else if(a<80) b = "中等&

Huffman树

结点定义: 1 /* 2 * Huffman树结点定义 3 */ 4 struct Node 5 { 6 ElementType weight; // 结点的权值 7 struct Node *leftChild; // 结点的左指针 8 struct Node *rightChild; // 结点的右指针 9 }; 根据给定权值数组,构建一个Huffman树: 1 /* 2 * 输出内存申请失败的消息 3 */ 4 void showFailureMessage() 5 { 6 printf(

Huffman tree(赫夫曼树、霍夫曼树、哈夫曼树、最优二叉树)

flyfish 2015-8-1 Huffman tree因为翻译不同所以有其他的名字 赫夫曼树.霍夫曼树.哈夫曼树 定义引用自严蔚敏<数据结构> 路径 从树中一个结点到另一个结点之间的分支构成两个结点之间的路径. 路径长度 路径上的分支数目称作路径长度. 树的路径长度 树的路径长度就是从根节点到每一结点的路径长度之和. 结点的带权路径长度 结点的带权路径长度就是从该结点到根节点之间的路径长度与结点上权的乘积. 树的带权路径长度 树的带权路径长度就是树中所有叶子结点的带权路径长度之和,通常记做

哈夫曼(huffman)树和哈夫曼编码

哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60分: E. if (a < 60){ b = 'E'; } else if (a < 70) { b = ‘D’; } else if (a<80) { b = ‘C’; } else if (a<90){ b = ‘B’; } else { b = ‘A’; } 判别树:用于描述分类

(转)哈夫曼(huffman)树和哈夫曼编码

原文地址 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60分: E. if (a < 60){ b = 'E'; } else if (a < 70) { b = ‘D’; } else if (a<80) { b = ‘C’; } else if (a<90){ b = ‘B’; } else { b = ‘A’; } 判别树:用于描述分类