切蛋糕(二分)(二维前缀和)



观察数据范围,n*m比较小,所以我们预先处理出前缀和。

然后我们可以考虑写一个函数来计算二维前缀和(二维前缀和大家都会的吧qwq,那我就不说了,就是要注意一下哪个是横轴哪个是纵轴)

之后就是二维上的二分位置,然后check看看符不符合二分出来的ans。

  • 注:一半求最大化最小值和最小化最大值的问题,都可以往二分想。我们可以把最优化问题二分后来check转化为判定问题。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define ll long long
#define maxn 550
using namespace std;
int n,m,lx,rx,ly,ry,aa,bb;
ll sum[maxn][maxn]; 

bool calc(int lx,int down,int rx,int up,int num)
    {return (sum[rx][up]-sum[rx][down-1]-sum[lx-1][up]+sum[lx-1][down-1])>=num;}

bool check2(int num){
    bool yes=1;ly=ry=1;
    for(int j=1;j<=bb;j++)
    {
        while(ry+1<=m&&!calc(lx,ly,rx,ry,num))
            ry++;
        if(!calc(lx,ly,rx,ry,num))
            {yes=0;break;}
        ly=++ry;
    }
    return yes;
}
bool check(int num){
    bool flag=1;
    lx=1,rx=1;
    for(int i=1;i<=aa;i++)
    {
        while(rx+1<=n&&!check2(num))
            rx++;
        if(!check2(num))
            {flag=0;break;}
        lx=++rx;
    }
    if(flag==1) return true;
    else return false;
}
int main(){
    freopen("champion.in","r",stdin);
    freopen("champion.out","w",stdout);
    scanf("%d%d%d%d",&n,&m,&aa,&bb);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            int cur;
            scanf("%d",&cur);
            sum[i][j]=sum[i][j-1]+cur;
        }
        for(int j=1;j<=m;j++) sum[i][j]+=sum[i-1][j];
    }
    //前缀和
    long long l=0,r=sum[n][m],mid;
    //二分可以取到的答案qwq
    while(l<r)
    {
        mid=(l+r)>>1;
        if(check(mid))
            l=mid+1;
        else r=mid;
    }
    printf("%lld\n",l-1);
    return 0;
}

原文地址:https://www.cnblogs.com/fengxunling/p/9786890.html

时间: 2024-10-08 22:03:47

切蛋糕(二分)(二维前缀和)的相关文章

Acwing-121-赶牛入圈(二分, 二维前缀和,离散化)

链接: https://www.acwing.com/problem/content/123/ 题意: 农夫约翰希望为他的奶牛们建立一个畜栏. 这些挑剔的畜生要求畜栏必须是正方形的,而且至少要包含C单位的三叶草,来当做它们的下午茶. 畜栏的边缘必须与X,Y轴平行. 约翰的土地里一共包含N单位的三叶草,每单位三叶草位于一个1 x 1的土地区域内,区域位置由其左下角坐标表示,并且区域左下角的X,Y坐标都为整数,范围在1到10000以内. 多个单位的三叶草可能会位于同一个1 x 1的区域内,因为这个原

openjudge1768 最大子矩阵[二维前缀和or递推|DP]

总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的矩阵 0 -2 -7 09 2 -6 2-4 1 -4 1-1 8 0 -2 的最大子矩阵是 9 2-4 1-1 8 这个子矩阵的大小是15. 输入 输入是一个N * N的矩阵.输入的第一行给出N (0 < N <= 100).再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给

Good Bye 2015 C. New Year and Domino 二维前缀

C. New Year and Domino They say "years are like dominoes, tumbling one after the other". But would a year fit into a grid? I don't think so. Limak is a little polar bear who loves to play. He has recently got a rectangular grid with h rows and w

计蒜客模拟赛D1T1 蒜头君打地鼠:矩阵旋转+二维前缀和

题目链接:https://nanti.jisuanke.com/t/16445 题意: 给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1. 题解: 将原矩阵顺时针旋转45°,二维前缀和预处理,然后枚举每一个可能砸到的正方形之和并取最大. 注:枚举的正方形的四个顶点必须是从原矩阵璇转过来的点,代码中用vis数组判断. #include <iostream> #include <stdio.h> #include <string.

弱校联盟10.7 I. Special Squares(二维前缀和)

题目链接: I. Special Squares There are some points and lines parellel to x-axis or y-axis on the plane. If arbitrary chosen two lines parallel to x-axis and two lines parallel to y-axis, one rectangle, or sometimes a square, will be formed. If a square i

CDOJ 1256 二维前缀和处理

昊昊喜欢运动 他NN 天内会参加MM 种运动(每种运动用一个[1,m][1,m] 的整数表示) 舍友有QQ 个问题 问昊昊第ll 天到第rr 天参加了多少种不同的运动 Input 输入两个数NN , MM (1≤N≤20001≤N≤2000 , 1≤M≤1001≤M≤100 ); 输入NN 个数aiai 表示在第i天昊昊做了第aiai 类型的运动; 输入一个数QQ (1≤Q≤1061≤Q≤106 ); 输入QQ 行 每行两个数 ll , rr (1≤l≤r≤n1≤l≤r≤n ); Output

二维前缀和 - 算法学习 - 输入输出优化

2017-08-27 11:11:38 writer:pprp 二维前缀和主要用到了容斥定理,具体实现还是有点复杂的 详见代码: /* @theme:二维前缀和 @writer:pprp @declare:用到容斥定理 @date:2017/8/27 */ #include <bits/stdc++.h> using namespace std; const int maxn = 1010; int n, m, a[maxn][maxn]; //输入优化 inline int read() {

二维前缀和

一维前缀和 : 这个优化 , 可以在 O (1) 的时间内计算出一个序列的和 , 二维前缀和 : 对于一个矩阵 , 也可以在 O (1) 的时间内计算出矩阵 (x1~x2)( y1 ~ y2 ) 的和 . sum[ i ] [ j ] 表示矩阵 1 ~ i , 1 ~ j 的和 , 那么由容斥原理知 sum[ 0 ] [ j ] 和 sum [ i ] [ 0 ] 均为 0 . 则  s[ x1 ~ x2 ] [ y1 ~ y2 ] = sum[ x2 , y2 ] + sum [ x1 - 1

杭电2018多校第四场(2018 Multi-University Training Contest 4) 1005.Problem E. Matrix from Arrays (HDU6336) -子矩阵求和-规律+二维前缀和

6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的,因为这个矩阵是左上半边有数,所以开4倍才能保证求的矩阵区域里面有数,就是图上的红色阴影部分,蓝色为待求解矩阵. 其他的就是容斥原理用一下,其他的就没什么了. 代码: 1 //1005-6336-矩阵求和-二维前缀和+容斥-预处理O(1)查询输出 2 #include<iostream> 3 #in