题面
题解
我永远讨厌dp.jpg
搞了一个下午优化复杂度最后发现只要有一个小trick就可以A了→_→。全场都插头dp就我一个状压跑得贼慢……
不难发现我们可以状压,对于每一行,用状态\(S\)表示有哪些格子是已经被上一行推倒了的,那么我们可以枚举本行所有格子的字母情况,然后计算一下这个时候下一行格子被推倒的情况,把这一行的贡献加到下一行就行了。
简单来说就是记一个\(f[pos][S]\)表示第\(pos\)行,格子被推倒的情况为\(S\)时的方案数,\(dp[pos][S]\)为所有方案中推倒树的总数,那么假设一个选字母的方案会使下一行的推倒情况为\(S'\),会使这一行可以推倒\(k\)棵树,则有转移\[f[pos+1][S']+=f[pos][S]\]
\[dp[pos+1][S']+=f[pos][S]+k\times f[pos][S]\]
最后\(f[n+1][0]\)就是答案。这样的话能有\(40\)分(建议先看一下40分代码不然看不太懂AC代码的……)
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=13,M=35,L=(1<<21)+5;
int a[N][M],f[N][L],dp[N][L],g[N][L],n,m,P,lim,ans,vis[N];
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
void solve(int pos){
fp(i,0,lim-1)if(f[pos][i]){
fp(j,0,lim-1){
int S=0,res=0;
fp(k,0,m-1)vis[k]=i&(1<<k);
fp(k,0,m-1)if(!vis[k]){
if(j&(1<<k)){
if(k!=m-1&&!vis[k+1])vis[k]=vis[k+1]=1,++res;
else{
if(pos!=n)S|=(1<<k),++res;
}
}else{
if(pos!=n)S|=(1<<k),++res;
else if(k!=m-1&&!vis[k+1])vis[k]=vis[k+1]=1,++res;
}
}
f[pos+1][S]=add(f[pos+1][S],f[pos][i]);
dp[pos+1][S]=add(dp[pos+1][S],mul(res,f[pos][i]));
dp[pos+1][S]=add(dp[pos+1][S],dp[pos][i]);
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
freopen("bear.in","r",stdin);
freopen("bear.out","w",stdout);
scanf("%d%d%d",&n,&m,&P),lim=(1<<m);
f[1][0]=1,dp[1][0]=0;
fp(i,1,n)solve(i);
printf("%d\n",dp[n+1][0]);
}
然后我们发现复杂度高的主要原因是因为行数太多,不过列数很少,那么我们可以对列进行状压。然而这样的话会不符合推倒的顺序。
我们考虑每一条副对角线,这条副对角线上肯定是从右上到左下的推倒顺序,于是我们可以对每一条副对角线进行状压,因为副对角线上元素个数为\(min(n,m)\),所以时间复杂度没问题
信心满满的交上去结果只有\(70\)分,因为按上面那种方式枚举行的推倒情况和行的字母不太好,对于那些已经被推倒的格子,它们不管怎么选都没有影响,所以我们可以只枚举那些没有被推倒的格子,那些已经被推倒的格子直接把贡献加上去就可以了,这样的话复杂度就是\(O(3^n\times\)乱七八糟的常数\()\)
还是一句话,注意细节
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=55,M=35,L=(1<<12)+5;
int a[N][M],f[N][L],dp[N][L],n,m,P,ans,vis[N];
int id[N][M],sz[L],bin[N];
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
void solve(int pos){
int cnt=pos-max(0,pos-n)-max(0,pos-m);
int stx,sty,edx,edy,dx,dy;
if(pos<=m)stx=pos,sty=1;
else stx=m,sty=pos-m+1;
if(pos<=n)edx=1,edy=pos;
else edx=pos-n+1,edy=n;
int qaq=pos+1>m,c=pos+1-max(0,pos+1-n)-max(0,pos+1-m);
int lim=(1<<cnt)-1;
fp(i,0,(1<<cnt)-1)if(f[pos][i]){
int T=lim^i,p=bin[sz[i]],flag=-2;
for(R int j=T;flag+=(j==T);j=(j-1)&T){
int res=0,S=0;
fp(k,0,c-1)vis[k]=0;
dx=stx,dy=sty;
fp(k,0,cnt-1){
if(!(i&(1<<k))){
if(j&(1<<k)){
if(dx!=m&&!vis[k-qaq])vis[k-qaq]=1,++res,S|=(1<<(k-qaq));
else if(dy!=n)vis[k+1-qaq]=1,++res,S|=(1<<(k-qaq+1));
}else{
if(dy!=n)vis[k+1-qaq]=1,++res,S|=(1<<(k-qaq+1));
else if(dx!=m&&!vis[k-qaq])vis[k-qaq]=1,++res,S|=(1<<(k-qaq));
}
}--dx,++dy;
}
f[pos+1][S]=add(f[pos+1][S],mul(f[pos][i],p));
dp[pos+1][S]=add(dp[pos+1][S],mul(mul(f[pos][i],res),p));
dp[pos+1][S]=add(dp[pos+1][S],mul(dp[pos][i],p));
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
freopen("bear.in","r",stdin);
freopen("bear.out","w",stdout);
scanf("%d%d%d",&n,&m,&P);
fp(i,1,(1<<(min(n,m)))-1)sz[i]=sz[i>>1]+(i&1);
bin[0]=1;fp(i,1,30)bin[i]=mul(bin[i-1],2);
f[1][0]=1,dp[1][0]=0;
fp(i,1,n+m-2)solve(i);
printf("%d\n",mul(add(dp[n+m-1][0],dp[n+m-1][1]),2));
}
原文地址:https://www.cnblogs.com/bztMinamoto/p/10233864.html