数据分析、挖掘方面 推荐的好书

入门读物:

  1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。
  2. 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。
  3. 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。
  4. 数学之美 (豆瓣) 这本书非常棒啦,入门读起来很不错!

数据分析:

  1. SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。
  2. Python for Data Analysis (豆瓣) 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!
  3. Bad Data Handbook (豆瓣) 很好玩的书,作者的角度很不同。

适合入门的教程:

  1. 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。
  2. Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!
  3. Building Machine Learning Systems with Python (豆瓣) 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。
  4. 数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。
  5. Machine Learning for Hackers (豆瓣) 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

稍微专业些的:

  1. Introduction to Semi-Supervised Learning (豆瓣) 半监督学习必读必看的书。
  2. Learning to Rank for Information Retrieval (豆瓣) 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
  3. Learning to Rank for Information Retrieval and Natural Language Processing (豆瓣) 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
  4. 推荐系统实践 (豆瓣) 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
  5. Graphical Models, Exponential Families, and Variational Inference (豆瓣) 这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
  6. Natural Language Processing with Python (豆瓣) NLP 经典,其实主要是讲 NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了 NLP 的很多内容了啊!

机器学习教材:

  1. The Elements of Statistical Learning (豆瓣) 这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。
  2. 统计学习方法 (豆瓣) 李航老师的扛鼎之作,强烈推荐。难易程度:难。
  3. Machine Learning (豆瓣) 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

    Machine Learning (豆瓣) 这书和上面的书不是一本!这书叫:Machine Learning: An Algorithmic Perspective 之前做过我带的研究生教材,由于配有代码,所以理解起来比较容易。
  4. Pattern Recognition And Machine Learning (豆瓣) 经典中的经典。
  5. Bayesian Reasoning and Machine Learning (豆瓣) 看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
  6. Probabilistic Graphical Models (豆瓣) 鸿篇巨制,这书谁要是读完了告诉我一声。
  7. Convex Optimization (豆瓣) 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

《Doing Data Science: Straight Talk from the Frontline》:Doing Data Science (豆瓣)

作者之一Rachel Schutt本科在密歇根大学学习数学,同时拥有纽约大学数学硕士学位,以及斯坦福大学工程经济系统和运筹学双硕士学位,美国哥伦比亚大学统计学博士学位,而后在谷歌研究所担任统计学专家。Johnson研究实验室的高级科学家兼创始人之一,目前在哥伦比亚大学讲授“数据科学导论”(Introduction to Data Science)课程。她提出了数据科学家的概念即“计算机科学家、软件工程师和统计学家的混合体。”另一位作者Cathy O’Neil是哈佛大学数学博士,麻省理工学院数学系博士后,目前在华尔街的德劭基金(D.E.Shaw)做quant。(总之是两个大牛XD)

本书前面几个章节大致介绍了数据分析法、一些机器学习算法、线性回归和逻辑回归、朴素贝叶斯等等。其中有一些内容需要一些数学基础才能吃透。 第六到十章节是本书的精华,详细介绍了如何利用金融及社交网络中的数据进行数据建模分析,值得反复回味。

《Agile Data Science: Building Data Analytics Applications with Hadoop》:Agile Data Science (豆瓣)

本书适合刚入行的数据爱好者以及有两三年工作经验数据科学家,作者立志打造一个full-stack解决方案(包括开发框架、运行环境等,有了它无需再下载别的软件)来减少前期在数据准备上必须花费的大量时间。此外书中的一些例子放在了GitHub上,建议一边看书一边DIY。

目前市面上关于Spark的书籍不多,这本120多页的薄书可以当做预热。Spark同Hadoop一样是基于Mapreduce算法实现的分布式计算,不同的是任务的中间输出结果可以保存在内存中无需读写HDFS,所以更加适合需要进行反复迭代的机器学习算法实验。作者Holden Karau曾在亚马逊数据挖掘项目组,目前是一名在谷歌工作的软件研发工程师。

《New Internet:大数据挖掘》 —— 是MS的一位资深专家写的,从算法到工具,再到DM在日志分析、营销邮件、电商、移动等业务中的实际应用,内容有较全面的介绍,语言浅显易懂,作DM领域进门读物很不错。并且在每章节后都有提供本章提到的工具或数据来源,方便学习。

《数据挖掘与数据化运营实战:思路、方法、技巧与应用》—— 这是ALi的一位数据专家写的,从书名能看出这本偏运营实践,里面有很多电商方面的实践案例。当然也有几章节概述DM工具和算法,作为入门介绍。

1、谁说菜鸟不会数据分析 (豆瓣) 其实EXCEL在工作中还是大杀器,原因是易传承,好传播

2、调查研究中的统计分析法 (豆瓣) 统计学肯定要了解,统计学书都可以的

3、SPSS统计分析精要与实例详解 (豆瓣) SPSS的内容,我是从这本书开始看的,因为这本书每个方法都有案例,可以直接看案例明白理论的作用,再加上 SPSS官方说明文档 基本上就够了

4、数据挖掘与数据化运营实战 (豆瓣) ali的专家写的,看了这本书能理解很多方法的适用场景,适用场景和数据解读能力对于业务能力要求很高。

数据仓库工具箱:维度建模的完全指南》

《Microsoft数据仓库工具箱》

《SQL Server 2008 分析服务从入门到精通》

《SQL Server 2008 报表服务从入门到精通》

另外,推荐以下链接:

原文地址:知乎

本文转自链接: http://www.zhihujingxuan.com/19146.html进行了重新整理数据分析、挖掘方面,有哪些好书值得推荐

原文地址:https://www.cnblogs.com/shujuxiong/p/10240883.html

时间: 2024-10-09 07:01:36

数据分析、挖掘方面 推荐的好书的相关文章

数据分析经典图书推荐

一.基础知识:我们都该学点统计学? 统计学是一门以概率论为基础的方法论学科,主要通过收集数据,进行量化的分析.总结,并进而进行推断和预测,为相关决策提供依据和参考.它在几乎所有学科领域里面都具有重要的应用,从物理.社会科学到人文科学,甚至被用来工商业及政府的情报决策之上. 往近了说,想要成为一名数据分析师或已是数据分析师需要提高的,必须掌握最基本的统计基础知识.统计思想:下面给推荐的,是目前市面上有关统计学原理写的相当不错的一些图书,供大家学习参考!! 1.<深入浅出统计学> 购买地址:京东 

天律的云端大数据分析挖掘之旅

随着数据爆炸式的增长,我们正被各种数据包围着,最为平常的使用网络.手机.各种电子设备,每天都在产生各种新的数据.大部分的企业和机构都面临着这样一个问题,需要从海量的历史.实时数据中寻找规律,从而为决策者提供科学的依据.但不可否认的是,现代所产生的信息量过于庞大,传统的业务软件已经远远不能满足这样的要求,而构建大规模数据处理中心对于大部分企业来讲都是一笔过于庞大的开支.这就迫切需要一种新颖的.高效的.成本低廉的技术来支撑对数据的挖掘工作,云计算无疑是最佳选择. 信息时代,一寸数据一寸金 IT环境已

推荐一本好书给即将走入工作的程序员and程序媴

近期买了几本IT届推崇的经典书籍.当中有一本<程序猿修炼之道:专业程序猿必知的33个技巧>.由于这本比較薄,所以先翻着看. 这本书有别于其它的技术书籍,事实上算不上一本技术书籍.它不是教你怎么去提高编程,怎么去提高某方面的技术.我觉得这更像一本内功心法,教给你职场的一些软技能.强烈推荐给即将入职的朋友们.我好懊悔当初没有早点接触到这本书,曲曲折折走了不少弯路.如今读来,依旧感触体会非常深. 这本书很多其它的是告诉你,在工作岗位上怎样更有效的开展工作.当中有几点我想谈谈自己的看法. 拜师 基本每

python&amp;数据分析&amp;数据挖掘--参考资料推荐书籍

1.要用python做数据分析,先得对python语言熟悉,推荐一本入门书 :笨方法学python (learn python the hard way),这本书用非常有趣的讲述方式介绍了python的基本语法,非常适合非计算机专业作为入门书来看. 2.用python做数据分析的话,推荐用 anaconda,地址https://www.anaconda.com/download/  ,可以根据需要选择版本 3.后面需要添加各种包的时候,在开始-所有程序,打开Anaconda prompt,输入

大数据分析挖掘全流程实战视频教程:电商市场与销售趋势预测

大数据分析挖掘全流程实战视频教程:电商市场与销售趋势预测资源下载:https://pan.baidu.com/s/1VPydETNHqhDDcJ1Lpko1AA 提取码:o9mk 课程特色:特色一:一套课程,搞定企业级数据分析与挖掘全栈技术特色二:基于Linux+Windows两套系统手把手教你搭建企业数据分析/挖掘开发环境,带你从0~1特色三:电商企业经典数据分析与挖掘项目全程贯穿,教你从1~100 课程目标:1.掌握预测分析的理论基础,一些数据分析挖掘软件的使用技巧2.通过掌握的分析技术及软

机器学习竞赛分享:通用的团队竞技类的数据分析挖掘方法

前言 该篇分享来源于NFL竞赛官方的R语言版本,我做的主要是翻译为Python版本: 分享中用到的技巧.构建的特征.展示数据的方式都可以应用到其他领域,比如篮球.足球.LOL.双人羽毛球等等,只要是团队竞技,都可以从中获益: 分享基于kaggle上的NFL大数据碗,也就是基于橄榄球: 泰森多边形的概念最好可以去了解一下,可以不用纠结于公式,看看它对一些实际问题的抽象建模表示即可: 分享目的 言简意赅的分享下在团队竞技类问题中一些有用的数据可视化.分析方法,不同的领域下对数据的处理确实千差万别,每

在大数据分析/挖掘领域,哪些编程语言应用最多?

Tim Roy ,原来我也在这里 9 人赞同 更新一下答案—— 之前我提到用R,后来我自己也觉得有点撑不住,应该是技术不行吧.还是建议往Python方向发展. Python不局限于数据分析,还有许多其他用途,有利于拓展视野.同时如果把它作为一门入门语言,它的简洁性.严格的缩进.丰富的第三方库都能帮助初学者很好地入门. 传送一个在数据分析.挖掘方面,有哪些好书值得推荐? - 书籍推荐肖大神推荐的书籍都可以参考,其中有不少优秀教材,都是以Python作为编程工具的,比Machine Learning

数据分析挖掘培训课程-加米谷大数据

加米谷数据分析与挖掘课程体系包括5个板块.9个阶段.200+模块以及4个真实项目实战. 第一阶段 Python基础 学习内容:Python基础 学习目标:基本语法.数据结构.算法及函数.文件系统 ... 等 学习效果:掌握Python基本知识,能熟练运用到项目 第二阶段 关系型数据库MySQL 学习内容:关系型数据库MySQL 学习目标:数据库设计.数据库范式及ACID特性.视图及索引 学习效果:掌握关系型数据库MySQL的用法,能熟练运用到项目 第三阶段 文档数据库MongoDB 学习内容:文

Python 和 R 数据分析/挖掘工具互查

如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索引,R中也以::表示了函数以及函数所在包的名字,如果不含::表示为R的默认包中就有,如含::,请使用 install.packages("*") 安装. 连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracl