深度学习500问,我觉得很不错

深度学习500问

https://github.com/scutan90/DeepLearning-500-questions/

NLP部分:

https://github.com/scutan90/DeepLearning-500-questions/blob/master/ch16_%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86(NLP)/%E7%AC%AC%E5%8D%81%E5%85%AD%E7%AB%A0_NLP.pdf

原文地址:https://www.cnblogs.com/charlesblc/p/9929159.html

时间: 2024-10-03 08:05:45

深度学习500问,我觉得很不错的相关文章

风险中性的深度学习选股策略

一.数据驱动型机器学习模型的问题 目前流行的机器学习方法,包括深度学习,大部分是数据驱动的方法,通过对训练集数据学习来提取知识.数据驱动型机器学习方法应用成功的前提是:从训练集数据中学习到的"知识"在样本外外推时依然适用. 当机器学习方法应用于投资领域时,一般是以历史数据作为训练集数据来训练模型,应用在未来的市场中.在深度学习多因子选股策略中,也是通过对历史股票行情数据的学习,来建立预测模型.此类机器学习方法在投资领域的应用是否会成功,取决于从历史数据中学习到的模型在未来的外推中是否有

TensorFlow实现基于深度学习的图像补全

目录 ■ 简介 ■ 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎样着手统计呢?这些都是图像啊. 那么我们怎样补全图像?  ■ 第二步:快速生成假图像 在未知概率分布情况下,学习生成新样本 [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构 使用G(z)生成伪图像 [ML-Heavy] 训练DCGAN 现有的GAN和DCGAN实现 [ML-Heavy] 在Tensorflow上构建DCGANs 在图片集上跑DC

[转]机器学习、深度学习、数据挖掘各种资源整理

Deep Learning(深度学习): ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二 Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错. deeplearning.net主页,里面包含的信息量非常多,有software, reading list, research lab, dataset, demo等,

(转) 深度学习在目标跟踪中的应用

深度学习在目标跟踪中的应用 原创 2016-09-05 徐霞清 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容的平台,邀请学术界.工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术.产品和活动信息! 开始本文之前,我们首先看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(vis

深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全

原文地址:Image Completion with Deep Learning in TensorFlow by Brandon Amos 原文翻译与校对:@MOLLY && 寒小阳 ([email protected]) 时间:2017年4月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所有,转载请联系作者并注明出 简介 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎

深度学习补充和总结

一.损失函数 深度学习中,常用的损失函数为均方误差和交叉熵,分别对应回归和分类问题,其实深度学习的损失函数和机器学习的损失函数差不多,是一致的,均方误差就相当于最小二乘,交叉熵其实是一种特殊的对数损失函数形式,这里不再赘述. 二.激活函数 是深度学习特有的. 关于激活函数,首先要搞清楚的问题是,激活函数是什么,有什么用?不用激活函数可不可以?答案是不可以.激活函数的主要作用是提供网络的非线性建模能力.如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络

深度学习性能提升的诀窍

深度学习性能提升的诀窍[转载] 原文: How To Improve Deep Learning Performance 作者: Jason Brownlee 提升算法性能的想法 这个列表并不完整,却是很好的出发点.我的目的是给大家抛出一些想法供大家尝试,或许有那么一两个有效的方法.往往只需要尝试一个想法就能得到提升.我把这个列表划分为四块: · 从数据上提升性能 · 从算法上提升性能 · 从算法调优上提升性能 · 从模型融合上提升性能 性能提升的力度按上表的顺序从上到下依次递减.举个例子,新的

[译]深度学习(Yann LeCun)

深度学习 严恩·乐库  约书亚•本吉奥  杰弗里·希尔顿 摘要深度学习是计算模型,是由多个处理层学习多层次抽象表示的数据.这些方法极大地提高了语音识别.视觉识别.物体识别.目标检测和许多其他领域如药物发现和基因组学的最高水平.深学习发现复杂的结构,在大数据集,通过使用反向传播算法来说明如何一台机器应改变其内部参数,用于计算每个层中表示从前一层的表示.深度卷积网络在处理图像.视频.语音等方面都带来了新的突破,而递归网络在连续的数据,如文本和语音有更出彩的表现.引言机器学习技术增强了现代社会的许多方

转:深度学习课程及深度学习公开课资源整理

http://www.52nlp.cn/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E8%AF%BE%E7%A8%8B%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%85%AC%E5%BC%80%E8%AF%BE%E8%B5%84%E6%BA%90%E6%95%B4%E7%90%86 这里整理一批深度学习课程或者深度学习相关公开课的资源,持续更新,仅供参考. 1. Andrew Ng (吴恩达) 深度学习专项课程 by Courser