pandas DataFrame(2)-行列索引及值的获取

pandas DataFrame是二维的,所以,它既有列索引,又有行索引

上一篇里只介绍了列索引:

import pandas as pd

df = pd.DataFrame({‘A‘: [0, 1, 2], ‘B‘: [3, 4, 5]})
print df

# 结果:
   A  B
0  0  3
1  1  4
2  2  5

行索引自动生成了 0,1,2

如果要自己指定行索引和列索引,可以使用 index 和 column 参数:

这个数据是5个车站10天内的客流数据:

ridership_df = pd.DataFrame(
    data=[[   0,    0,    2,    5,    0],
          [1478, 3877, 3674, 2328, 2539],
          [1613, 4088, 3991, 6461, 2691],
          [1560, 3392, 3826, 4787, 2613],
          [1608, 4802, 3932, 4477, 2705],
          [1576, 3933, 3909, 4979, 2685],
          [  95,  229,  255,  496,  201],
          [   2,    0,    1,   27,    0],
          [1438, 3785, 3589, 4174, 2215],
          [1342, 4043, 4009, 4665, 3033]],
    index=[‘05-01-11‘, ‘05-02-11‘, ‘05-03-11‘, ‘05-04-11‘, ‘05-05-11‘,
           ‘05-06-11‘, ‘05-07-11‘, ‘05-08-11‘, ‘05-09-11‘, ‘05-10-11‘],
    columns=[‘R003‘, ‘R004‘, ‘R005‘, ‘R006‘, ‘R007‘]
)

data 参数为一个numpy二维数组,  index 参数为行索引, column 参数为列索引

生成的数据以表格形式显示:

          R003  R004  R005  R006  R007
05-01-11     0     0     2     5     0
05-02-11  1478  3877  3674  2328  2539
05-03-11  1613  4088  3991  6461  2691
05-04-11  1560  3392  3826  4787  2613
05-05-11  1608  4802  3932  4477  2705
05-06-11  1576  3933  3909  4979  2685
05-07-11    95   229   255   496   201
05-08-11     2     0     1    27     0
05-09-11  1438  3785  3589  4174  2215
05-10-11  1342  4043  4009  4665  3033

下面说下如何获取DataFrame里的值:

1.获取某一列: 直接 [‘key‘]

print(ridership_df[‘R003‘])

# 结果:
05-01-11       0
05-02-11    1478
05-03-11    1613
05-04-11    1560
05-05-11    1608
05-06-11    1576
05-07-11      95
05-08-11       2
05-09-11    1438
05-10-11    1342
Name: R003, dtype: int64

2.获取某一行:  .loc[‘key‘]

print(ridership_df.loc[‘05-01-11‘])
# 或者
print(ridership_df.iloc[0])

# 结果:
R003    0
R004    0
R005    2
R006    5
R007    0
Name: 05-01-11, dtype: int64

3.获取某一行某一列的某个值:

print(ridership_df.loc[‘05-05-11‘,‘R003‘])
# 或者
print(ridership_df.iloc[4,0])

# 结果:
1608

4.获取原始的numpy二维数组:

print(ridership_df.values)

# 结果:
[[   0    0    2    5    0]
 [1478 3877 3674 2328 2539]
 [1613 4088 3991 6461 2691]
 [1560 3392 3826 4787 2613]
 [1608 4802 3932 4477 2705]
 [1576 3933 3909 4979 2685]
 [  95  229  255  496  201]
 [   2    0    1   27    0]
 [1438 3785 3589 4174 2215]
 [1342 4043 4009 4665 3033]]

*注意在这过程中,数据格式如果不一致,会发生转换.

一个综合栗子:

从 ridership_df 找出第一天里客流量最多的车站,然后返回这个车站的日平均客流,以及返回所有车站的平均日客流,作为对比:

def mean_riders_for_max_station(ridership):
    max_index = ridership.iloc[0].argmax()
    mean_for_max = ridership[max_index].mean()
    overall_mean = ridership.values.mean()
    return (overall_mean, mean_for_max)

print mean_riders_for_max_station(ridership_df)

# 结果:
(2342.6, 3239.9)

原文地址:https://www.cnblogs.com/liulangmao/p/9248930.html

时间: 2024-10-07 23:16:52

pandas DataFrame(2)-行列索引及值的获取的相关文章

pandas DataFrame(1)

之前介绍了numpy的二维数组,但是numpy二维数组有一些局限性,比如,它数组里所有的值的类型必须相同,不能某一列是数值型,某一列是字符串型,这样会导致无法使用 mean() , std() 等方法去计算某一行或某一列. 但是,使用pandas DataFrame可以解决这一问题. pandas DataFrame也是二维数据,和pandas Series一样, pandas DataFrame也有'索引'这个概念,它每一列都有一个索引值: import pandas as pd df = p

pandas.DataFrame学习系列1——定义及属性

定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典

pandas DataFrame(4)-向量化运算

pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: import pandas as pd df1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) df2 = pd.DataFrame({'a': [10, 20, 30], 'b': [40, 50, 60], 'c': [70, 80, 90]}) print df1 + df2 a b

pandas学习(创建多层索引、数据重塑与轴向旋转)

pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组,Series也可以创建多层索引. s = Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']]) # 输出 a 期中 59 期末 4

Pandas DataFrame构造简析

参考书籍:<利用Python进行数据分析> DataFrame简介: DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值等).DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引).跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的.其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表.字典或别的一维数据结构). 导入py

pandas DataFrame和Series

Pandas入门-Series和DataFrame 概述:pandas含有使数据分析工作变得更快更简单的高级数据结构和操作工具,pandas是基于Numpy构建的.pandas在过去的几年中逐渐成长为一个非常强大的库. pandas的数据结构介绍 引入pandas >>> from pandas import Series,DataFrame >>> import pandas as pd pandas有两个主要的数据结构:Series和DataFrame. Serie

数据分析--pandas DataFrame

pandas DataFrame是一个表格类型的数据,含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值).DataFrame即有行索引,也有列索引,可以看作由Series组成的字典(公用同一个索引). DataFrame是以一个或者多个二维块存放的(而不是列表,字典或别的一维数据结构) 构建DataFrame 传入一个等长列表或Numpy数组组成的字典 DataFrame会自动加上索引,且全部列会被有序排列 可以指定序列的排序 传入的列在数据中找不到,会产生Na值 从DataFra

[python][pandas]DataFrame的基本操作

问题来源 在实验中经常需要将数据保存到易于查看的文件当中,由于大部分都是vector数据,所以选择pandas的dataframe来保存到csv文件是最简单的方法. 基本操作 下图是DataFrame的一些基本概念,可以看出与基本的csv结构是保持一致的. 1. 创建DataFrame 创建DataFrame通常有两种方法,从list中创建和从dict中创建: 从dict创建,key的名字会作为名,如下所示: >>> d = {'col1': [1, 2], 'col2': [3, 4]

pandas.DataFrame的groupby()方法的基本使用

pandas.DataFrame的groupby()方法是一个特别常用和有用的方法.让我们快速掌握groupby()方法的基础使用,从此数据分析又多一法宝. 首先导入package: import pandas as pd import numpy as np groupby的最基本操作 df = pd.DataFrame({'A':[1,2,3,1],'B':[2,3,3,6],'C':[3,1,5,7]}) df 按照A列来进行分组(其实说白了就是将A列中重复的值和成同一个值,然后把A当成索