poj 1269 Intersecting Lines(判相交交点与平行)

http://poj.org/problem?id=1269

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10379   Accepted: 4651

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

//////////////////////////////////////////////////////////////////////////////////////////////////////

题目大意是给定n对线,判断每一对线是平行还是相交并求出交点

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <limits.h>
#include <iostream>

const double eps = 1e-6;
typedef struct Node
{
    double x,y;
} point;

typedef struct
{
    point a,b;
} line;

bool dy(double x,double y){    return x>eps+y;}//x>y

bool xy(double x,double y){    return x<y-eps;}//x<y

bool dyd(double x,double y){    return x>y-eps;}//x>=y

bool xyd(double x,double y){    return x<y+eps;}//x<=y

bool dd(double x,double y){    return fabs(x-y)<eps;}//x==y

double crossProduct(point a,point b,point c)//ab  ac
{
    return (c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);
}

bool parallel(line u,line v)
{
    return dd((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y),0.0);
}

point intersection(line u,line v)
{
    point ans=u.a;
    double t = ((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/
    ((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ans.x+=(u.b.x-u.a.x)*t;
    ans.y+=(u.b.y-u.a.y)*t;
    return ans;
}

int main()
{
    line u,v;
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        printf("INTERSECTING LINES OUTPUT\n");
        while(n--)
        {
            scanf("%lf%lf%lf%lf",&u.a.x,&u.a.y,&u.b.x,&u.b.y);
            scanf("%lf%lf%lf%lf",&v.a.x,&v.a.y,&v.b.x,&v.b.y);

            if(parallel(u,v))
            {
                if(dd(crossProduct(u.a,u.b,v.a),0.0))
                    printf("LINE\n");
                else
                    printf("NONE\n");
            }
            else
            {
                point ans=intersection(u,v);
                printf("POINT %.2lf %.2lf\n",ans.x,ans.y);
            }
        }
        printf("END OF OUTPUT\n");
    }

}

由于并不是太懂,就拷贝别人的了

原帖:http://blog.csdn.net/zxy_snow/article/details/6341282

先判断两条直线是不是同线,不是的话再判断是否平行,再不是的话就只能是相交的,求出交点。

如何判断是否同线?由叉积的原理知道如果p1,p2,p3共线的话那么(p2-p1)X(p3-p1)=0。因此如果p1,p2,p3共线,p1,p2,p4共线,那么两条直线共线。direction()求叉积,叉积为0说明共线。

如何判断是否平行?由向量可以判断出两直线是否平行。如果两直线平行,那么向量p1p2、p3p4也是平等的。即((p1.x-p2.x)*(p3.y-p4.y)-(p1.y-p2.y)*(p3.x-p4.x))==0说明向量平等。

如何求出交点?这里也用到叉积的原理。假设交点为p0(x0,y0)。则有:

(p1-p0)X(p2-p0)=0

(p3-p0)X(p2-p0)=0

展开后即是

(y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0

(y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0

将x0,y0作为变量求解二元一次方程组。

假设有二元一次方程组

a1x+b1y+c1=0;

a2x+b2y+c2=0

那么

x=(c1*b2-c2*b1)/(a2*b1-a1*b2);

y=(a2*c1-a1*c2)/(a1*b2-a2*b1);

因为此处两直线不会平行,所以分母不会为0。

×/

poj 1269 Intersecting Lines(判相交交点与平行)

时间: 2024-10-01 05:03:46

poj 1269 Intersecting Lines(判相交交点与平行)的相关文章

POJ 1269 Intersecting Lines 直线相交判断

D - Intersecting Lines Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1269 Appoint description:  System Crawler  (2016-05-08) Description We all know that a pair of distinct points on a plane d

POJ 1269 Intersecting Lines(线段相交,水题)

Intersecting Lines 大意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:线段相交判断.求交点的水题,没什么好说的. struct Point{ double x, y; } ; struct Line{ Point a, b; } A, B; double xmult(Point p1, Point p2, Point p) { return (p1.x-p.x)*(p2.y-p.y)-(p1.y-p.y)*(p2.x-p.x); } bool

POJ 1269 Intersecting Lines(判断直线相交)

题目地址:POJ 1269 直接套模板就可以了...实在不想自己写模板了...写的又臭又长....不过这题需要注意的是要先判断是否有直线垂直X轴的情况. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h>

poj 1269 Intersecting Lines——叉积求直线交点坐标

题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么是叉积:https://blog.csdn.net/sunbobosun56801/article/details/78980467        其二维:https://blog.csdn.net/qq_38182397/article/details/80508303计算交点:    方法1:面

POJ 1269 Intersecting Lines【判断直线相交】

题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0 将x0,y0作为变量求解二元一次方程组. 假设有二元一次方程组 a1x+b1y+c1=0; a2x+b2y+c2=0

poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 5548 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three

POJ 1269 - Intersecting Lines 直线与直线相交

题意:    判断直线间位置关系: 相交,平行,重合 1 include <iostream> 2 #include <cstdio> 3 using namespace std; 4 struct Point 5 { 6 int x , y; 7 Point(int a = 0, int b = 0) :x(a), y(b) {} 8 }; 9 struct Line 10 { 11 Point s, e; 12 int a, b, c;//a>=0 13 Line() {

判断两条直线的位置关系 POJ 1269 Intersecting Lines

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点.来判断直线L1和L2的关系 这三种关系一个一个来看: 1. 共线. 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上.所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关

POJ 1269 - Intersecting Lines - [平面几何模板题]

题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection b