CP1934-麦子深度学习深入与强化

麦子深度学习第三阶段深入与强化

随笔背景:在很多时候,很多入门不久的朋友都会问我:我是从其他语言转到程序开发的,有没有一些基础性的资料给我们学习学习呢,你的框架感觉一下太大了,希望有个循序渐进的教程或者视频来学习就好了。对于学习有困难不知道如何提升自己可以加扣:1225462853进行交流得到帮助,获取学习资料.

下载地址:https://pan.baidu.com/s/2FjsshZ

时间: 2024-10-31 19:32:17

CP1934-麦子深度学习深入与强化的相关文章

李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程

目前,深度学习和深度强化学习已经在实践中得到了广泛的运用.资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程. 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识. 吴恩达:深度学习专项 这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动

【推荐算法工程师技术栈系列】机器学习深度学习--强化学习

目录 强化学习基本要素 马尔科夫决策过程 策略学习(Policy Learning) 时序差分方法(TD method) Q-Learning算法 Actor-Critic方法 DQN DDPG 推荐系统强化学习建模 附录 强化学习基本要素 智能体(agent):与环境交互,负责执行动作的主体: 环境(Environment):可以分为完全可观测环境(Fully Observable Environment)和部分可观测环境(Partially Observable Environment).

一文让你看懂人工智能、机器学习、深度学习和强化学习的关系

如果说信息技术是第三次工业革命的核心,那么人工智能所代表的智能则是下一次工业革命的核心力量. 2016年,谷歌阿尔法围棋以4:1战胜围棋世界冠军.职业九段棋手李世石,不仅让深度学习为人们所知,而且掀起了人工智能的"大众热".此后,人工智能越来越热,从机器人开发.语音识别.图像识别.自然语言处理到专家系统等不断推陈出新. 同时,人工智能技术越来越多地融入到我们的生活中,出现了智能音箱.智能助理.智能机器人等. 根据应用领域的不同,人工智能研究的技术也不尽相同,目前以机器学习.计算机视觉等

关于机器学习和深度学习的资料

声明:转来的,原文出处:http://blog.csdn.net/achaoluo007/article/details/43564321 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. &

秦涛:深度学习的五个挑战和其解决方案

深度学习的五个挑战和其解决方案 编者按:日前,微软亚洲研究院主管研究员秦涛博士受邀作客钛媒体,分享他对深度学习挑战和解决方案的思考 ,本文为秦涛博士在此次分享的实录整理. 大家好,我是微软亚洲研究院的秦涛,今天我将分享我们组对深度学习这个领域的一些思考,以及我们最近的一些研究工作.欢迎大家一起交流讨论. 先介绍一下我所在的机器学习组.微软亚洲研究院机器学习组研究的重点是机器学习,包含机器学习的各个主要方向,从底层的深度学习分布式机器学习平台(AI的Infrastructure)到中层的深度学习.

一线开发者在Reddit上讨论深度学习框架:PyTorch和TensorFlow到底哪个更好?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 PyTorch   近日,Reddit用户 cjmcmurtrie 发了一个主题为「PyTorch vs. TensorFlow」的讨论帖,想要了解这两大流行的框架之间各自有什么优势. 原帖地址:https://redd.it/5w3q74 帖子一楼写道: 我还没有从 Torch7 迁移到 TensorFlow.我玩过 TensorFlow,但我发现 Torch7 更加直观(也许是我玩得不够?).我也尝试了

深度学习 vs 机器学习 vs 模式识别

整理:深度学习 vs 机器学习 vs 模式识别 发表于2015-03-24 22:58| 78882次阅读| 来源个人博客| 41 条评论| 作者Tomasz Malisiewicz 模式识别深度学习机器学习数据科学家 摘要:本文我们来关注下三个非常相关的概念(深度学习.机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系,让你更好的理解计算机视觉,同时直观认识机器学习的缓慢发展过程. [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人

人工智能与深度学习

人工智能的关键是机器学习,机器学习的突破是深度学习,人工神经网络. 1956年,在达特茅斯会议(Dartmouth Conferences)上,计算机科学家首次提出了“AI”术语,AI由此诞生,在随后的日子里,AI成为实验室的“幻想对象”.几十年过去了,人们对AI的看法不断改变,有时会认为AI是预兆,是未来人类文明的关键,有时认为它只是技术垃圾,只是一个轻率的概念,野心过大,注定要失败.坦白来讲,直到2012年AI仍然同时具有这两种特点. 在过去几年里,AI大爆发,2015年至今更是发展迅猛.之

TensorFlow与主流深度学习框架对比

引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架. TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度学