2016猿辅导初中数学竞赛训练营作业题解答-2

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元).

分解下列因式:

1. $(2x^2+5x)^2 - 2x^2 - 5x - 6$

解答: $$(2x^2+5x)^2 - 2x^2 - 5x - 6 = (2x^2+5x)^2 - (2x^2 + 5x) - 6$$ $$= (2x^2 + 5x - 3)(2x^2 + 5x + 2)$$ $$= (2x - 1)(x + 3)(2x + 1)(x + 2).$$

2. $x^4 + 4x^3 + 4x^2 - 11(x^2 + 2x) + 24$

解答: $$x^4 + 4x^3 + 4x^2 - 11(x^2 + 2x) + 24 = (x^2 + 2x)^2 - 11(x^2 + 2x) + 24$$ $$= (x^2 + 2x - 3)(x^2 + 2x - 8)$$ $$= (x+3)(x - 1)(x - 2)(x + 4).$$

3. $(x+1)(2x + 1)(3x-1)(4x-1) + 6x^4$

解答: $$(x+1)(2x + 1)(3x-1)(4x-1) + 6x^4 = [(x + 1)(3x - 1)][(2x + 1)(4x - 1)] + 6x^4$$ $$= (3x^2 + 2x - 1)(8x^2 + 2x - 1) + 6x^4$$ $$= 24x^4 + 11x^2(2x - 1) + (2x-1)^2 + 6x^4$$ $$= 30x^4 + 11x^2(2x - 1) + (2x - 1)^2$$ $$= (5x^2 + 2x - 1)(6x^2 + 2x - 1).$$

4. $a(b+c-a)^2 + b(c+a-b)^2 + c(a+b-c)^2 + (b+c-a)(c+a-b)(a+b-c)$

解答:

设 $b + c - a = x$, $c + a - b = y$, $a + b - c = z$,

易知 $a + b + c = x + y + z$, $2a = y + z$, $2b = z + x$, $2c = x + y$.

由此原式可变形 $${1\over2}(y + z)x^2 + {1\over2}(z + x)y^2 + {1\over2}(x + y)z^2 + xyz$$ $$= {1\over2}\left[(y+z)x^2 + (z+x)y^2 + (x + y)z^2 + 2xyz\right]$$ $$= {1\over2}\left(x^2y + x^2z + y^2z + xy^2 + xz^2 + yz^2 + 2xyz\right)$$ $$=  {1\over2}\left[xy(x + y + z) + yz(x + y + z) + xz(x + z)\right]$$ $$= {1\over2}\left[y(x + y + z)(x + z) + xz(x + z)\right]$$ $$= {1\over2}(x + z)\left(xy + y^2 + yz + xz\right)$$ $$= {1\over2}(x + z)(x + y)(y + z) = 4abc.$$

5. $2x^4 - x^3 - 6x^2 - x + 2$

解答: $$2x^4 - x^3 - 6x^2 - x + 2 = 2(x^4 + 1) - (x^3 + x) - 6x^2$$ $$= 2(x^2 + 1)^2 - 4x^2 - x(x^2 + 1) - 6x^2$$ $$= 2(x^2 + 1)^2 - x(x^2 + 1) - 10x^2$$ $$= \left[2(x^2+1) - 5x\right]\left[(x^2 + 1) + 2x\right]$$ $$= (2x^2 - 5x + 2)(x^2 + 2x + 1) = (2x - 1)(x - 2)(x + 1)^2.$$ 注: 本题还可采取拆项 $x^3(2x - 1) - 3x(2x - 1)- 2(2x - 1)$ 或由系数对称直接提取 $x^2$ 后进行换元求解(如以下第6题之解法).

6. $x^4 + x^3 + \displaystyle{9\over4}x^2 + x + 1$

解答: $$x^4 + x^3 + \displaystyle{9\over4}x^2 + x + 1 = x^2\left(x^2 + x + {9\over4} + {1\over x} + {1\over x^2}\right)$$ $$= x^2\left[(x + {1\over x})^2 - 2 + (x + {1\over x}) + {9\over4}\right]$$ $$= x^2\left[(x + {1\over x})^2 + (x + {1\over x}) + {1\over 4}\right]$$ $$= x^2\left(x + {1\over x} + {1\over2}\right)^2$$ $$= (x^2 + {1\over2}x + 1)^2 = {1\over4}(2x^2 + x + 2)^2.$$

7. $(x+y+z)^3 + (3x - 2y - 3z)^3 - (4x - y - 2z)^3$

解答:

注意到三项立方(代数)和, 且 $(x + y + z) + (3x - 2y - 3z) + (-4x + y + 2z) = 0$, 因此 $$(x+y+z)^3 + (3x - 2y - 3z)^3 - (4x - y - 2z)^3 = 3(x + y + z)(3x - 2y - 3z)(-4x + y + 2z)$$ $$= -3(x + y + z)(3x - 2y - 3z)(4x - y - 2z).$$

猿辅导App二维码链接:

时间: 2024-10-05 05:41:42

2016猿辅导初中数学竞赛训练营作业题解答-2的相关文章

2016猿辅导初中数学竞赛训练营作业题解答-7

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $3x^2 - x = 1$, 则 $6x^3 + 7x^2 - 5x + 2016$ 的值是多少? 解答: $$6x^3 + 7x^2 - 5x + 2016 = 2x(3x^2 - x - 1) + 9x^2 - 3x + 2016$$ $$= 9x^2 - 3x + 2016 = 3(3x^2 - x - 1) + 2019 = 2019.$$ 2. 多项式 $2

2016猿辅导初中数学竞赛训练营作业题解答-6

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. $(x + y + z)^5 - x^5 - y^5 - z^5$ 解答: $f(x, y, z)$ 是五次齐次对称式. 验证 $$f(-y, y, z) = z^5 + y^5 - y^5 - z^5 = 0$$ 因此 $x+y$, $y+z$, $z+x$ 均为 $f(x, y, z)$ 之因式 (需补充二次齐次对称式因式). 令 $$f(x, y, z) = (x +

2016猿辅导初中数学竞赛训练营作业题解答-13

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程. 1. 一轮船从重庆到上海要 $5$ 昼夜, 从上海到重庆要 $7$ 昼夜, 那么有一个木排从重庆漂到上海要多少昼夜? 解答: 设水流速度为 $x$, 则 $$x = \left(\frac{1}{5} - \frac{1}{7}\right) \div 2 = \frac{1}{35}.$$ 因此需要 $35$ 昼夜. 2. 十时与十一时之间, 两针在什么时刻成直线? 解答: $\Delta S =

2016猿辅导初中数学竞赛训练营作业题解答-5

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 分解因式 $a^3 - 4a^2 + a + 6$. 解答: 令 $f(a) = a^3 - 4a^2 + a + 6$, 其有理根可能为 $\pm1$, $\pm2$, $\pm3$, $\pm6$. 注意到 $f(a)$ 奇次项与偶次项系数和相等 (等于 $2$), 因此 $f(-1) = 0$. 由综合除法可得: $$a^3 - 4a^2 + a - 6 = (a +

2016猿辅导初中数学竞赛训练营作业题解答-9

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $\displaystyle{1\over n} - {1\over m} - {1\over n+m} = 0$, 则 $\displaystyle\left({m\over n} + {n \over m}\right)^2 = ?$ 解答: $${1\over n} - {1\over m} = {1\over n + m} \Rightarrow m^2 - n

2016猿辅导初中数学竞赛训练营作业题解答-8

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $a^2 + 2a + 5$ 是 $a^4 + ma^2 + n$ 的一个因式, 那么 $mn$ 的值是多少? 解答: 待定系数法求解. 令 $a^4 + ma^2 + n = (a^2 + 2a + 5)(a^2 + pa + q)$, 则 $$\begin{cases}p + 2 = 0\\ 5 + q + 2p = m\\ 5q = n\\ 2q + 5p = 0

2016猿辅导初中数学竞赛训练营作业题解答-10

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 化简: $${1\over a-x} - {1\over a+x} - {2x \over a^2 + x^2} - {4x^3 \over a^4 + x^4} - {8x^7 \over a^8 - x^8}$$ 解答: $${1\over a-x} - {1\over a+x} - {2x \over a^2 + x^2} - {4x^3 \over a^4 + x^

2016猿辅导初中数学竞赛训练营作业题解答-4

扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 用待定系数法分解因式(1-6题) 1. $x^2 + xy - 2y^2 + 2x + 7y - 3$ 解答: $$x^2 + xy - 2y^2 + 2x + 7y - 3 = (x + 2y + a)(x - y + b)$$ $$= x^2 + xy - 2y^2 + (a + b)x + (2b - a)y + ab$$ $$\Rightarrow \begin{case

数学奥林匹克问题解答:猿辅导初中数学竞赛基础特训营作业题

猿辅导(点击进入官网)初中数学竞赛基础特训营于2016年8月27-31日在网络上举行,五天课程总计上课人数超过3万人.授课内容包括四个专题:整数的基本性质.抽屉原理初步.方程与不等式及平面几何新讲初步.以下为本次特训营作业题解答. 1.$a, b$ 是任意自然数, 试证明: $30\ \big{|}\ \left[ab(a^4 - b^4)\right]$. (Hungary) 证明: $$ab(a^4 - b^4) = ab\left[\left(a^4 - 1\right) - \left(