如何解决机器学习中数据不平衡问题

作者:无影随想 
时间:2016年1月。 
出处:http://www.zhaokv.com/2016/01/learning-from-imbalanced-data.html 
声明:版权所有,转载请联系作者并注明出处

这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。

一、数据不平衡

在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果。因为实际数据往往分布得很不均匀,都会存在“长尾现象”,也就是所谓的“二八原理”。下图是新浪微博交互分布情况:

可以看到大部分微博的总互动数(被转发、评论与点赞数量)在0-5之间,交互数多的微博(多于100)非常之少。如果我们去预测一条微博交互数所在档位,预测器只需要把所有微博预测为第一档(0-5)就能获得非常高的准确率,而这样的预测器没有任何价值。那如何来解决机器学习中数据不平衡问题呢?这便是这篇文章要讨论的主要内容。

严格地讲,任何数据集上都有数据不平衡现象,这往往由问题本身决定的,但我们只关注那些分布差别比较悬殊的;另外,虽然很多数据集都包含多个类别,但这里着重考虑二分类,因为解决了二分类中的数据不平衡问题后,推而广之就能得到多分类情况下的解决方案。综上,这篇文章主要讨论如何解决二分类中正负样本差两个及以上数量级情况下的数据不平衡问题。

不平衡程度相同(即正负样本比例类似)的两个问题,解决的难易程度也可能不同,因为问题难易程度还取决于我们所拥有数据有多大。比如在预测微博互动数的问题中,虽然数据不平衡,但每个档位的数据量都很大——最少的类别也有几万个样本,这样的问题通常比较容易解决;而在癌症诊断的场景中,因为患癌症的人本来就很少,所以数据不但不平衡,样本数还非常少,这样的问题就非常棘手。综上,可以把问题根据难度从小到大排个序:大数据+分布均衡<大数据+分布不均衡<小数据+数据均衡<小数据+数据不均衡。对于需要解决的问题,拿到数据后,首先统计可用训练数据有多大,然后再观察数据分布情况。经验表明,训练数据中每个类别有5000个以上样本,数据量是足够的,正负样本差一个数量级以内是可以接受的,不太需要考虑数据不平衡问题(完全是经验,没有理论依据,仅供参考)。

二、如何解决

解决这一问题的基本思路是让正负样本在训练过程中拥有相同的话语权,比如利用采样与加权等方法。为了方便起见,我们把数据集中样本较多的那一类称为“大众类”,样本较少的那一类称为“小众类”。

1. 采样

采样方法是通过对训练集进行处理使其从不平衡的数据集变成平衡的数据集,在大部分情况下会对最终的结果带来提升。

采样分为上采样(Oversampling)下采样(Undersampling),上采样是把小种类复制多份,下采样是从大众类中剔除一些样本,或者说只从大众类中选取部分样本。

随机采样最大的优点是简单,但缺点也很明显。上采样后的数据集中会反复出现一些样本,训练出来的模型会有一定的过拟合;而下采样的缺点显而易见,那就是最终的训练集丢失了数据,模型只学到了总体模式的一部分。

上采样会把小众样本复制多份,一个点会在高维空间中反复出现,这会导致一个问题,那就是运气好就能分对很多点,否则分错很多点。为了解决这一问题,可以在每次生成新数据点时加入轻微的随机扰动,经验表明这种做法非常有效。

因为下采样会丢失信息,如何减少信息的损失呢?第一种方法叫做EasyEnsemble,利用模型融合的方法(Ensemble):多次下采样(放回采样,这样产生的训练集才相互独立)产生多个不同的训练集,进而训练多个不同的分类器,通过组合多个分类器的结果得到最终的结果。第二种方法叫做BalanceCascade,利用增量训练的思想(Boosting):先通过一次下采样产生训练集,训练一个分类器,对于那些分类正确的大众样本不放回,然后对这个更小的大众样本下采样产生训练集,训练第二个分类器,以此类推,最终组合所有分类器的结果得到最终结果。第三种方法是利用KNN试图挑选那些最具代表性的大众样本,叫做NearMiss,这类方法计算量很大,感兴趣的可以参考“Learning
from Imbalanced Data”这篇综述的3.2.1节。

2. 数据合成

数据合成方法是利用已有样本生成更多样本,这类方法在小数据场景下有很多成功案例,比如医学图像分析等。

其中最常见的一种方法叫做SMOTE,它利用小众样本在特征空间的相似性来生成新样本。对于小众样本xi∈Smin

,从它属于小众类的K近邻中随机选取一个样本点x^i,生成一个新的小众样本xnew:xnew=xi+(x^?xi)×δ,其中δ∈[0,1]

是随机数。

上图是SMOTE方法在K=6

近邻下的示意图,黑色方格是生成的新样本。

SMOTE为每个小众样本合成相同数量的新样本,这带来一些潜在的问题:一方面是增加了类之间重叠的可能性,另一方面是生成一些没有提供有益信息的样本。为了解决这个问题,出现两种方法:Borderline-SMOTE与ADASYN。

Borderline-SMOTE的解决思路是寻找那些应该为之合成新样本的小众样本。即为每个小众样本计算K近邻,只为那些K近邻中有一半以上大众样本的小众样本生成新样本。直观地讲,只为那些周围大部分是大众样本的小众样本生成新样本,因为这些样本往往是边界样本。确定了为哪些小众样本生成新样本后再利用SMOTE生成新样本。

ADASYN的解决思路是根据数据分布情况为不同小众样本生成不同数量的新样本。首先根据最终的平衡程度设定总共需要生成的新小众样本数量G

,然后为每个小众样本xi计算分布比例Γi:Γi=Δi/KZ,其中Γi是xiK近邻中大众样本的数量,Z用来归一化使得∑Γi=1,最后为小众样本xi生成新样本的个数为gi=Γi×G

,确定个数后再利用SMOTE生成新样本。

3. 加权

除了采样和生成新数据等方法,我们还可以通过加权的方式来解决数据不平衡问题,即对不同类别分错的代价不同,如下图:

k C(k,1) C(k,2) ... 0
  1 2 ... k
1 0 C(1,2) ... C(1,k)
2 C(2,1) 0 ... ...
... ... ... ... ...

横向是真实分类情况,纵向是预测分类情况,C(i,j)是把真实类别为j的样本预测为i时的损失,我们需要根据实际情况来设定它的值。

这种方法的难点在于设置合理的权重,实际应用中一般让各个分类间的加权损失值近似相等。当然这并不是通用法则,还是需要具体问题具体分析。

4. 一分类

对于正负样本极不平衡的场景,我们可以换一个完全不同的角度来看待问题:把它看做一分类(One Class
Learning)或异常检测(Novelty
Detection)问题。这类方法的重点不在于捕捉类间的差别,而是为其中一类进行建模,经典的工作包括One-class SVM等。

5. 算法层面,采用代价敏感方法。

(1)重构训练集的方法。不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。

(2)引入代价敏感因子,设计出代价敏感的分类算法。通常对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。

6. 特征选择

样本数量分布很不平衡时,特征的分布同样会不平衡。尤其在文本分类问题中,在大类中经常出现的特征,也许在稀有类中根本不出现。因此,根据不平衡分类问题的特点,选取最具有区分能力的特征,有利于提高稀有类的识别率 。

按照一个经验性的样本比例,挑选正负2个样本集,分别从中选择最能表示该类样本的特征集,然后将这些特征集合并作为最后挑选的特征。

三、如何选择

解决数据不平衡问题的方法有很多,上面只是一些最常用的方法,而最常用的方法也有这么多种,如何根据实际问题选择合适的方法呢?接下来谈谈一些我的经验。

在正负样本都非常之少的情况下,应该采用数据合成的方式;在负样本足够多,正样本非常之少且比例及其悬殊的情况下,应该考虑一分类方法;在正负样本都足够多且比例不是特别悬殊的情况下,应该考虑采样或者加权的方法。

采样和加权在数学上是等价的,但实际应用中效果却有差别。尤其是采样了诸如Random Forest等分类方法,训练过程会对训练集进行随机采样。在这种情况下,如果计算资源允许上采样往往要比加权好一些。

另外,虽然上采样和下采样都可以使数据集变得平衡,并且在数据足够多的情况下等价,但两者也是有区别的。实际应用中,我的经验是如果计算资源足够且小众类样本足够多的情况下使用上采样,否则使用下采样,因为上采样会增加训练集的大小进而增加训练时间,同时小的训练集非常容易产生过拟合。对于下采样,如果计算资源相对较多且有良好的并行环境,应该选择Ensemble方法。

四、更进一步

更多细节与更多方法可以参考TKDE上的这篇综述:“Learning from Imbalanced Data”。

时间: 2024-11-06 13:55:30

如何解决机器学习中数据不平衡问题的相关文章

分类中数据不平衡问题的解决经验

问题:研究表明,在某些应用下,1∶35的比例就会使某些分类方法无效,甚至1∶10的比例也会使某些分类方法无效. (1)少数类所包含的信息就会很有限,从而难以确定少数类数据的分布,即在其内部难以发现规律,进而造成少数类的识别率低 (2)数据碎片.很多分类算法采用分治法,样本空间的逐渐划分会导致数据碎片问题,这样只能在各个独立的子空间中寻找数据的规律,对于少数类来说每个子空间中包含了很少的数据信息,一些跨空间的数据规律就不能被挖掘出来. (3)不恰当的归纳偏置.许多归纳推理系统在存在不确定时往往倾向

[转]如何处理机器学习中的不平衡类别

如何处理机器学习中的不平衡类别 原文地址:How to Handle Imbalanced Classes in Machine Learning 原文作者:elitedatascience 译文出自:掘金翻译计划 本文永久链接:github.com/xitu/gold-m- 译者:RichardLeeH 校对者:lsvih, lileizhenshuai 如何处理机器学习中的不平衡类别 不平衡类别使得"准确率"失去意义.这是机器学习 (特别是在分类)中一个令人惊讶的常见问题,出现于每

从重采样到数据合成:如何处理机器学习中的不平衡分类问题?

转载自[机器之心]http://www.jiqizhixin.com/article/2499本文作者为来自 KPMG 的数据分析顾问 Upasana Mukherjee 如果你研究过一点机器学习和数据科学,你肯定遇到过不平衡的类分布(imbalanced class distribution).这种情况是指:属于某一类别的观测样本的数量显著少于其它类别. 这个问题在异常检测是至关重要的的场景中很明显,例如电力盗窃.银行的欺诈交易.罕见疾病识别等.在这种情况下,利用传统机器学习算法开发出的预测模

分类中数据不平衡问题的解决经验[转载]

问题:研究表明,在某些应用下,1∶35的比例就会使某些分类方法无效,甚至1∶10的比例也会使某些分类方法无效.(1)少数类所包含的信息就会很有限,从而难以确定少数类数据的分布,即在其内部难以发现规律,进而造成少数类的识别率低(2)数据碎片.很多分类算法采用分治法,样本空间的逐渐划分会导致数据碎片问题,这样只能在各个独立的子空间中寻找数据的规律,对于少数类来说每个子空间中包含了很少的数据信息,一些跨空间的数据规律就不能被挖掘出来.(3)不恰当的归纳偏置.许多归纳推理系统在存在不确定时往往倾向于把样

机器学习中样本不平衡的处理方法

在现实收集的样本中,正负类别不均衡是现实数据中很常见的问题.一个分类器往往 Accuracy 将近90%,但是对少数样本的判别的 Recall 却只有10%左右.这对于我们正确找出少数类样本非常不利. 举例来说:在一波新手推荐的活动中,预测用户是否会注册的背景下,不注册的用户往往是居多的,这个正负比例通常回事1:99甚至更大.一般而言,正负样本比例超过1:3,分类器就已经会倾向于负样本的判断(表现在负样本Recall过高,而正样本 Recall 低,而整体的 Accuracy依然会有很好的表现)

解决InputStream中数据读取不完整问题

如果你要看这篇文章,希望你对inputStream流的读取已经有所了解. 当需要用到InputStream获取数据时,这时就需要读取InputStream里面的数据了. InputStream读取流有三个方法,分别为read(),read(byte[] b),read(byte[] b, int off, int len).在从数据流里读取数据时,为图简单,经常用InputStream.read()方法.这个方法是从流里每次只读取读取一个字节,效率会非常低.更好的方法是用InputStream.

机器学习中数据的划分,N折交叉验证

1:对于分类数据来说,它们的target可能分配是不均匀的,比如在医疗数据当中得癌症的人比不得癌症的人少很多,这个时候,使用的数据划分方法有  StratifiedKFold  ,StratifiedShuffleSplit 2:对于分组数据来说,它的划分方法是不一样的,主要的方法有 GroupKFold,LeaveOneGroupOut,LeavePGroupOut,GroupShuffleSplit 3:对于时间关联的数据,方法有TimeSeriesSplit eg: 采用Stratifie

机器学习中的数据不平衡问题

最近碰到一个问题,其中的阳性数据比阴性数据少很多,这样的数据集在进行机器学习的时候会使得学习到的模型更偏向于预测结果为阴性.查找了相关的一些文献,了解了一些解决这个问题的一些方法和技术. 首先,数据集不平衡会造成怎样的问题呢.一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高,另外一个是学习器应该用在与训练集有相同分布的 测试集上.如果数据不平衡,那么学习器使得它的准确率最高肯定是更偏向于预测结果为比例更大的类别.比如说阳性的比例为1%,阴性的比例为99%,很明显 的是即使不学习,直接

【机器学习】解决数据不平衡问题

在机器学习的实践中,我们通常会遇到实际数据中正负样本比例不平衡的情况,也叫数据倾斜.对于数据倾斜的情况,如果选取的算法不合适,或者评价指标不合适,那么对于实际应用线上时效果往往会不尽人意,所以如何解决数据不平衡问题是实际生产中非常常见且重要的问题. 什么是类别不平衡问题 我们拿到一份数据时,如果是二分类问题,通常会判断一下正负样本的比例,在机器学习中,通常会遇到正负样本极不均衡的情况,如垃圾邮件的分类等:在目标检测SSD中,也经常遇到数据不平衡的情况,检测器需要在每张图像中评价一万个到十万个候选