【BZOJ3489】A simple rmq problem kd-tree

【BZOJ3489】A simple rmq problem

Description

因为是OJ上的题,就简单点好了。给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过一次的数,并且要求找的这个数尽可能大。如果找不到这样的数,则直接输出0。我会采取一些措施强制在线。

Input

第一行为两个整数N,M。M是询问数,N是序列的长度(N<=100000,M<=200000)

第二行为N个整数,描述这个序列{ai},其中所有1<=ai<=N

再下面M行,每行两个整数x,y,

询问区间[l,r]由下列规则产生(OIER都知道是怎样的吧>_<):

l=min((x+lastans)mod n+1,(y+lastans)mod n+1);

r=max((x+lastans)mod n+1,(y+lastans)mod n+1);

Lastans表示上一个询问的答案,一开始lastans为0

Output

一共M行,每行给出每个询问的答案。

Sample Input

10 10
6 4 9 10 9 10 9 4 10 4
3 8
10 1
3 4
9 4
8 1
7 8
2 9
1 1
7 3
9 9

Sample Output

4
10
10
0
0
10
0
4
0
4

HINT

注意出题人为了方便,input的第二行最后多了个空格。

2015.6.24新加数据一组,2016.7.9放至40S,600M,但未重测

题解:在[l,r]中只出现一次等价于:上一次出现的位置<l&&l<=这次出现的位置<=r&&下一次出现的位置>r。然后写个三维kd-tree就行了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define rep for(int i=0;i<3;i++)
#define D1 ((D+1)%3)
#define D2 ((D+2)%3)
using namespace std;
const int maxn=100010;
int A,B,D,n,m,ans,root;
int head[maxn],pre[maxn],next[maxn],buc[maxn],v[maxn];
struct kd
{
	int v[3],sm[3],sn[3],ls,rs,ms,s;
	kd (){}
	kd (int a,int b,int c,int d){v[0]=sm[0]=sn[0]=a,v[1]=sm[1]=sn[1]=b,v[2]=sm[2]=sn[2]=c,s=ms=d,ls=rs=0;}
	int	& operator [] (int a)	{return v[a];}
	bool operator < (kd a)	const
	{
		return (v[D]==a[D])?((v[D1]==a[D1])?(v[D2]==a[D2]):(v[D1]<a[D1])):(v[D]<a[D]);
	}
};
kd t[maxn];
int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
void pushup(int x,int y)
{
	rep t[x].sm[i]=max(t[x].sm[i],t[y].sm[i]),t[x].sn[i]=min(t[x].sn[i],t[y].sn[i]);
	t[x].ms=max(t[x].ms,t[y].ms);
}
int build(int l,int r,int d)
{
	if(l>r)	return 0;
	D=d;
	int mid=l+r>>1;
	nth_element(t+l,t+mid,t+r+1);
	t[mid].ls=build(l,mid-1,(d+1)%3),t[mid].rs=build(mid+1,r,(d+1)%3);
	if(t[mid].ls)	pushup(mid,t[mid].ls);
	if(t[mid].rs)	pushup(mid,t[mid].rs);
	return mid;
}
int check(int x)
{
	if(t[x].ms<=ans||t[x].sm[0]<A||t[x].sn[0]>B||t[x].sn[1]>=A||t[x].sm[2]<=B)	return 0;
	return 1;
}
void query(int x)
{
	if(!x||!check(x))	return ;
	if(t[x][0]>=A&&t[x][0]<=B&&t[x][1]<A&&t[x][2]>B&&t[x].s>ans)	ans=t[x].s;
	query(t[x].ls),query(t[x].rs);
}
int main()
{
	n=rd(),m=rd();
	int i;
	for(i=1;i<=n;i++)
	{
		v[i]=rd(),pre[i]=head[v[i]];
		if(head[v[i]])	next[head[v[i]]]=i;
		head[v[i]]=i;
	}
	for(i=1;i<=n;i++)	if(!next[i])	next[i]=n+1;
	for(i=1;i<=n;i++)	t[i]=kd(i,pre[i],next[i],v[i]);
	root=build(1,n,0);
	for(i=1;i<=m;i++)
	{
		A=(ans+rd())%n+1,B=(ans+rd())%n+1;
		if(A>B)	swap(A,B);
		ans=0,query(root);
		printf("%d\n",ans);
	}
	return 0;
}
时间: 2024-10-05 04:45:45

【BZOJ3489】A simple rmq problem kd-tree的相关文章

【bzoj3489】 A simple rmq problem k-d树

由于某些原因,我先打了一个错误的树套树,后来打起了$k-d$.接着因不明原因在思路上被卡了很久,在今天中午蹲坑时恍然大悟...... 对于一个数字$a_i$,我们可以用一组三维坐标$(i,pre,nxt)$来表示,其中$i$表示该数字下标,$pre$表示在区间$[1,i)$中满足$a[j]=a[i]$的最大$j$,若不存在,则$pre=0$.$nxt$表示在区间$(i,n]$中满足$a[j]=a[i]$的最小$j$,若不存在,则$nxt=n+1$. 接着我们种一棵3-d树去存储这n个点.对于任意

【bzoj3489】A simple rmq problem

Portal -->bzoj3489 Solution 最近计划智力康复qwq(话说这题一年前刚刚开始写树套树的时候感觉好难啊qwq现在看其实还好也算是有进步的嘛!) 比较重要的一步是,要将"在\([l,r]\)中只出现一次"这个条件转化成"\(nxt[x]>r\)&&\(pre[x]<l\)",其中\(nxt[x]\)表示下一个出现位置\(x\)的数的位置,\(pre[x]\)表示前一个 然后我们就发现其实是有三个限制: 1.\(

【BZOJ】【3489】A simple rmq problem

KD-Tree(乱搞) Orz zyf教给蒟蒻做法 蒟蒻并不会这题正解……(可持久化树套树?...Orz 对于每个点,我们可以求出pre[i],nex[i],那么询问的答案就是:求max (a[i]),其中 i 满足$ ( pre[i]<ql \ and \ nex[i]>qr\ and\ i \in [ql,qr] ) $ 然后我们以(i,pre[i],nex[i])为坐标……将所有点抽象到三维空间中,每次查询就相当于是一次区域求最值! 这题我的感受: 因为前面做了两道区域求和的……然后思路

【HDOJ】2451 Simple Addition Expression

递推,但是要注意细节.题目的意思,就是求s(x) = i+(i+1)+(i+2),i<n.该表达中计算过程中CA恒为0(包括中间值)的情况.根据所求可推得.1-10: 31-100: 3*41-1000: 3*4*41-10000: 3*4*4*41-10^n: 3*4^(n-1).并且需要注意,一旦发现某一位大于3,则应立即跳出累加的循环.比如,f(133) = 24,f(143) = 24.同时,单独讨论个位的情况.28行的break处理该种情况. 1 #include <cstdio&g

【hoj】 1017 Joseph&#39;s problem II

这个是约瑟夫的另一个变型,变为总共有2*k个人,先是K个好人后是k个坏人,要求前k次都要杀坏人,即在杀掉第一个好人之前就要把所有的坏人都杀光,所以需要我们求出满足这个条件的最小的m值: 由约瑟夫的递归模型可以发现,我们因为他的递归是从最后杀的人递归到原有的人数,所以我们可以吧顺序反过来,等价于最后杀掉k个坏人,再杀好人,这样在递归的时候就是先知道起始位置(先杀的人),这样就能迭代,由有好人时是否杀的是坏人来判定这个m是否适合,如果k次后杀到了第k个坏人则说明这个m是适合的 参考:http://w

【hoj】1016 Joseph&#39;s problem I

约瑟夫问题是一个很经典的问题,描述的是n的人围成一圈,每次数到第m个人就会被淘汰,之后在淘汰的人开始在数起第m个人,这样下去只带还剩下1个人为胜利者,这个题是约瑟夫问题的变形,它每次裁定的标准不再是一个恒定的m而是按照素数表中的第i次淘汰第i个人,所以我们需要求出素数表才能知道裁定的次序,也才能求出剩下的人的序号 首先,对于约瑟夫原本的问题是可以对每次淘汰使用逐个列举,将这n个人每个人都列举,没有出局的话就计1直到数到还没淘汰的第m个,但是这样下来对于n值很大的情况就会很耗时间,所以一定会有别的

【CF903G】Yet Another Maxflow Problem 线段树

[CF903G]Yet Another Maxflow Problem 题意:一张图分为两部分,左边有n个点A,右边有m个点B,所有Ai->Ai+1有边,所有Bi->Bi+1有边,某些Ai->Bj有边,每条边都有一定的容量. 先要求你支持两种操作: 1.修改某条Ai->Ai+1的边的容量2.询问从A1到Bm的最大流 n,m<=100000,流量<=10^9 题解:很有思维含量的题. 首先,我们把求最大流变成求最小割.容易发现,我们最多只会割一条Ai->Ai+1的边

【POJ】2480 Longge&#39;s problem(欧拉函数)

题目 传送门:QWQ 分析 题意就是求∑gcd(i, N) 1<=i <=N.. 显然$ gcd(i,n) = x $时,必然$x|n$. 所以我们枚举一下n的约数,对于每个约数x,显然$ gcd(i/x,n/x)=1$ 所以我们计算一下n/x的欧拉函数就ok了. 联赛前刷水题qwq 代码 // #include <bits/stdc++.h> #include <cstdio> #include <cmath> #include <algorithm

【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA

[BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组