Wannafly挑战赛14 F.细胞

题解:NTT、二项式定理

再逆FFT求出系数ans[i],本题即可解了

另:采用FFT的话,复数既不方便,误差也很大。

从FFT到NTT:

由费马小定理可知 gp-1%p=1    (p为质数)

所以利用这个性质来对应单位复数根乘方的周期性,即

代码:

#include<iostream>
using namespace std;
typedef long long ll;
const ll Mod=998244353;
const ll G=3;
ll kpow(ll a,ll k)
{
    ll res=1LL;
    while(k>0)
    {
        if(k&1)res=res*a%Mod;
        a=a*a%Mod;
        k>>=1;
    }
    return res;
}
void change(ll y[],int len)
{
    for(int i=1,j=len/2;i<len-1;i++)
    {
        if(i<j)swap(y[i],y[j]);
        int k=len/2;
        while(j>=k)
        {
            j-=k;
            k/=2;
        }
        if(j<k)j+=k;
    }
}
void fft(ll y[],int len,int on)
{
    change(y,len);
    for(int h=2;h<=len;h<<=1)
    {
        ll wn=kpow(G,(Mod-1)/h);
        if(on==-1)wn=kpow(wn,Mod-2);
        for(int j=0;j<len;j+=h)
        {
            ll w=1LL;
            for(int k=j;k<j+h/2;k++)
            {
                ll u=y[k];
                ll t=w*y[k+h/2]%Mod;
                y[k]=(u+t)%Mod;
                y[k+h/2]=(u-t+Mod)%Mod;
                w=w*wn%Mod;
            }
        }
    }
    if(on==-1)
    {
        ll t=kpow(len,Mod-2);
        for(int i=0;i<len;i++)
            y[i]=y[i]*t%Mod;
    }
}
ll a[1<<20];
int main()
{
    ll n,m;
    scanf("%lld%lld",&n,&m);
    ll wn=kpow(G,(Mod-1)/(1<<m)),w=1;
    for(int i=0;i<(1<<m);i++)
    {
        a[i]=kpow(2*w+1,n);
        w=w*wn%Mod;
    }

    fft(a,(1<<m),-1);
    ll res=0,buf=1;

    for(int i=0;i<(1<<m);i++)
    {
        res=(res+a[i]*buf)%Mod;
        buf=buf*2222303%Mod;
    }
    printf("%lld\n",res);
    return 0;
}

  

原文地址:https://www.cnblogs.com/lnu161403214/p/9118966.html

时间: 2024-10-10 00:06:48

Wannafly挑战赛14 F.细胞的相关文章

Wannafly挑战赛14

A.直角三棱锥 枚举推式子 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 LL gcd(LL a, LL b){ 5 return a % b ? gcd(b, a % b) : b; 6 } 7 int main(){ 8 int T; 9 scanf("%d", &T); 10 while(T--) { 11 LL K, M, six = 6; 12 cin

【Wannafly挑战赛4】F 线路规划 倍增+Kruskal+归并

[Wannafly挑战赛4]F 线路规划 题目描述 Q国的监察院是一个神秘的组织.这个组织掌握了整个帝国的地下力量,监察着Q国的每一个人.监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只听从其上直接司的命令.其中1号成员是监察院的院长,这个庞然大物的主人.由于时代的进步,监察院议会决定升级组织的旧式通信器,安装最新的反侦测通信器.他们拿出了M组线路方案,其中第i组线路方案可以用一个四元组(x[i].y[i].k[i].w[i])描述,表示第x[i]号成员可以安装与y[i]号成员的直

Wannafly挑战赛18

Wannafly挑战赛18 A. 序列 先考虑暴力,相邻两个树之间乘上给定的三种数,递推出下一个位置填什么,然后再check一下,最后一位是否为1即可.这样时间显然不行,但是给我们一种思路,就是中间的转换关系,确定唯一一个序列.现在的目标是让最后一位出现1,可以如果不管1,由-2和0.5取凑出1需要两个-2和两个0.5.那所有的转换中,就只要保证有若干组(-2,-2,0.5,0.5)存在,其他地方为1即可.具体公式见代码 #include <bits/stdc++.h> #define rep

Wannafly挑战赛19

Wannafly挑战赛19 A. 队列Q 需要支持把一个元素移到队首,把一个元素移到队尾,移到队首就直接放到队首前面那个位置,原位置标为0,队尾同理. #include <bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;++i) typedef long long ll; const int N = 30000200; using namespace std; int n,m; int q[N],hd,x,ed,P[N]; char

Wannafly挑战赛25游记

Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\)并且\(p^{k+1}\not|x\)的因子. 思路: 枚举\(p\)的每一个质因数\(q\),求出它在\(n!\)出现次数\(/p\)中出现次数,取\(\min\)即可.对于一个质因数\(q\),在\(n!\)中出现的次数等于\(\sum_{i=1}^{\inf}\frac n{q^i}\).

Wannafly挑战赛3

Wannafly挑战赛3 A    珂朵莉 B    遇见 水题 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i) #define mes(a

牛客网 Wannafly挑战赛8 C-小C打比赛 (状压DP)

小C现在要参加一场wannafly挑战赛,一场挑战赛一共有n道题,一共有m分钟. 对于第i道题,小C解决它需要恰好j分钟的概率是pi,j. 小C每次会选择某一道没做完的题,然后把它解决(不能中途放弃),之后再决策下一道要做的题是哪道. 求小C在最优策略下,期望能做出几道题. 输入描述: 第一行两个正整数n,m接下来一共n行,每行有m个小数,第i行的第j个小数表示p i,j (这里假设不存在0分钟A题的dalao). 输出描述: 输出一个小数,表示期望能做出几道题,保留小数点后五位. 示例1 输入

Wannafly挑战赛11 D 白兔的字符串 Hash

Wannafly挑战赛11 D   白兔的字符串 白兔有一个字符串T.白云有若干个字符串S1,S2..Sn. 白兔想知道,对于白云的每一个字符串,它有多少个子串是和T循环同构的. 提示:对于一个字符串a,每次把a的第一个字符移动到最后一个,如果操作若干次后能够得到字符串b,则a和b循环同构. 所有字符都是小写英文字母 输入描述: 第一行一个字符串T(|T|<=10^6)第二行一个正整数n (n<=1000)接下来n行为S1~Sn (|S1|+|S2|+…+|Sn|<=10^7),max(

Wannafly挑战赛22游记

Wannafly挑战赛22游记 幸福的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2,\ldots,a_n\)中的任意一个整数,操作次数不限(可以为\(0\)次),问计数器的值对\(m\)取模后有几种可能. 思路: 由裴蜀定理易得,答案即为\(\frac m{\gcd(m,a_1,a_2,\ldots,a_n)}\). 源代码: #include<cstdio> #include