高并发之服务降级和服务熔断

服务降级:

服务压力剧增的时候根据当前的业务情况及流量对一些服务和页面有策略的降级,以此环节服务器的压力,以保证核心任务的进行。

同时保证部分甚至大部分任务客户能得到正确的相应。也就是当前的请求处理不了了或者出错了,给一个默认的返回。

服务熔断:在股票市场,熔断这个词大家都不陌生,是指当股指波幅达到某个点后,交易所为控制风险采取的暂停交易措施。相应的,服务熔断一般是指软件系统中,由于某些原因使得服务出现了过载现象,为防止造成整个系统故障,从而采用的一种保护措施,所以很多地方把熔断亦称为过载保护。

降级分类

降级按照是否自动化可分为:自动开关降级和人工开关降级。

降级按照功能可分为:读服务降级、写服务降级。

降级按照处于的系统层次可分为:多级降级。

自动降级分类

(1)、超时降级:主要配置好超时时间和超时重试次数和机制,并使用异步机制探测回复情况

(2)、失败次数降级:主要是一些不稳定的api,当失败调用次数达到一定阀值自动降级,同样要使用异步机制探测回复情况

(3)、故障降级:比如要调用的远程服务挂掉了(网络故障、DNS故障、http服务返回错误的状态码、rpc服务抛出异常),则可以直接降级。降级后的处理方案有:默认值(比如库存服务挂了,返回默认现货)、兜底数据(比如广告挂了,返回提前准备好的一些静态页面)、缓存(之前暂存的一些缓存数据)

(4)、限流降级

当我们去秒杀或者抢购一些限购商品时,此时可能会因为访问量太大而导致系统崩溃,此时开发者会使用限流来进行限制访问量,当达到限流阀值,后续请求会被降级;降级后的处理方案可以是:排队页面(将用户导流到排队页面等一会重试)、无货(直接告知用户没货了)、错误页(如活动太火爆了,稍后重试)。

服务熔断和服务降级比较:

两者其实从有些角度看是有一定的类似性的:
  1. 目的很一致,都是从可用性可靠性着想,为防止系统的整体缓慢甚至崩溃,采用的技术手段;
  2. 最终表现类似,对于两者来说,最终让用户体验到的是某些功能暂时不可达或不可用;
  3. 粒度一般都是服务级别,当然,业界也有不少更细粒度的做法,比如做到数据持久层(允许查询,不允许增删改);
  4. 自治性要求很高,熔断模式一般都是服务基于策略的自动触发,降级虽说可人工干预,但在微服务架构下,完全靠人显然不可能,开关预置、配置中心都是必要手段;
而两者的区别也是明显的:
  1. 触发原因不太一样,服务熔断一般是某个服务(下游服务)故障引起,而服务降级一般是从整体负荷考虑;
  2. 管理目标的层次不太一样,熔断其实是一个框架级的处理,每个微服务都需要(无层级之分),而降级一般需要对业务有层级之分(比如降级一般是从最外围服务开始)
  3. 实现方式不太一样

服务降级要考虑的问题:

1.核心和非核心服务

2.是否支持降级,降级策略

3.业务放通的场景,策略

Hystrix,该库旨在通过控制那些访问远程系统、服务和第三方库的节点,从而对延迟和故障提供更强大的容错能力。Hystrix具备拥有回退机制和断路器功能的线程和信号隔离,请求缓存和请求打包(request collapsing,即自动批处理,译者注),以及监控和配置等功能。

原文地址:https://www.cnblogs.com/xiangkejin/p/9278729.html

时间: 2024-11-07 19:09:42

高并发之服务降级和服务熔断的相关文章

SpringCloud系列七:Hystrix 熔断机制(Hystrix基本配置、服务降级、HystrixDashboard服务监控、Turbine聚合监控)

1.概念:Hystrix 熔断机制 2.具体内容 所谓的熔断机制和日常生活中见到电路保险丝是非常相似的,当出现了问题之后,保险丝会自动烧断,以保护我们的电器, 那么如果换到了程序之中呢? 当现在服务的提供方出现了问题之后整个的程序将出现错误的信息显示,而这个时候如果不想出现这样的错误信息,而希望替换为一个错误时的内容. 一个服务挂了后续的服务跟着不能用了,这就是雪崩效应 对于熔断技术的实现需要考虑以下几种情况: · 出现错误之后可以 fallback 错误的处理信息: · 如果要结合 Feign

Hystrix服务降级

在微服务架构中,我们将系统拆分成了一个个的服务单元,各单元应用间通过服务注册与订阅的方式互相依赖.由于每个单元都在不同的进程中运行,依赖通过远程调用的方式执行,这样就有可能因为网络原因或是依赖服务自身问题出现调用故障或延迟,而这些问题会直接导致调用方的对外服务也出现延迟,若此时调用方的请求不断增加,最后就会出现因等待出现故障的依赖方响应而形成任务积压,线程资源无法释放,最终导致自身服务的瘫痪,进一步甚至出现故障的蔓延最终导致整个系统的瘫痪.如果这样的架构存在如此严重的隐患,那么相较传统架构就更加

Spring Cloud构建微服务架构-Hystrix服务降级

在微服务架构中,我们将系统拆分成了一个个的服务单元,各单元应用间通过服务注册与订阅的方式互相依赖.由于每个单元都在不同的进程中运行,依赖通过远程调用的方式执行,这样就有可能因为网络原因或是依赖服务自身问题出现调用故障或延迟,而这些问题会直接导致调用方的对外服务也出现延迟,若此时调用方的请求不断增加,最后就会出现因等待出现故障的依赖方响应而形成任务积压,线程资源无法释放,最终导致自身服务的瘫痪,进一步甚至出现故障的蔓延最终导致整个系统的瘫痪.如果这样的架构存在如此严重的隐患,那么相较传统架构就更加

六、服务容错保护(Hystrix服务降级)

1.简介 在微服务架构中,我们将系统拆分成立一个个的服务单元,各单元应用间通过服务注册与订阅的方式互相依赖.由于每个单元都在不同的进程间运行,依赖通过远程调用的方式执行,这样就可以因为网络原因或者依赖服务自身问题出现调用故障或延迟,若此时调用方的请求不断增加,最后就会出现因等待出现故障的依赖方响应而形成任务的积压,线程资源无法释放,最终导致自身服务的瘫痪,进一步甚至出现故障的蔓延导致整个系统的瘫痪.如果这样的架构存在如此严重的隐患,那么相较于传统的架构就会更加的不稳定.为了解决这样的问题,就产生

分布式的几件小事(六)dubbo如何做服务治理、服务降级以及重试

1.服务治理 服务治理主要作用是改变运行时服务的行为和选址逻辑,达到限流,权重配置等目的. ①调用链路自动生成 一个大型的分布式系统,会由大量的服务组成,那么这些服务之间的依赖关系和调用链路会很复杂,这就需要dubbo对多个服务之间的调用自动记录下来,生成一张图,显示出来. ②服务反复问压力以及时长统计 需要自动统计各个接口和服务之间的调用次数以及访问延时,而且要分成两个级别.一个级别是接口粒度,就是每个服务的每个接口每天被调用多少次,TP50,TP90,TP99,三个档次的请求延时分别是多少:

【转载】聊聊高并发系统之降级特技

原文:聊聊高并发系统之降级特技 在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.之前已经有一些文章介绍过缓存和限流了.本文将详细聊聊降级.当访问量剧增.服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务.系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级.本文将介绍一些笔者在实际工作中遇到的或见到过的一些降级方案供大家参考. 降级的最终目的是保证核心服务可用,即使是有损的.而且有些服务是无法降级的(如加入购

谈谈我对服务熔断、服务降级的理解

伴随着微服务架构被宣传得如火如荼,一些概念也被推到了我们面前(管你接受不接受),其实大多数概念以前就有,但很少被提的这么频繁(现在好像不提及都不好意思交流了).想起有人总结的一句话,微服务架构的特点就是:“一解释就懂,一问就不知,一讨论就吵架”. 其实对老外的总结能力一直特别崇拜,Kevin Kelly.Martin Fowler.Werner Vogels……,都是著名的“演讲家”.正好这段时间看了些微服务.容器的相关资料,也在我们新一代产品中进行了部分实践,回过头来,再来谈谈对一些概念的理解

SpringCloud实战-Hystrix请求熔断与服务降级

我们知道大量请求会阻塞在Tomcat服务器上,影响其它整个服务.在复杂的分布式架构的应用程序有很多的依赖,都会不可避免地在某些时候失败.高并发的依赖失败时如果没有隔离措施,当前应用服务就有被拖垮的风险.Spring Cloud Netflix Hystrix就是隔离措施的一种实现,可以设置在某种超时或者失败情形下断开依赖调用或者返回指定逻辑,从而提高分布式系统的稳定性. 生活中举个例子,如电力过载保护器,当电流过大的的时候,出问题,过载器会自动断开,从而保护电器不受烧坏.因此Hystrix请求熔

Hystrix请求熔断与服务降级

我们知道大量请求会阻塞在Tomcat服务器上,影响其它整个服务.在复杂的分布式架构的应用程序有很多的依赖,都会不可避免地在某些时候失败.高并发的依赖失败时如果没有隔离措施,当前应用服务就有被拖垮的风险.Spring Cloud Netflix Hystrix就是隔离措施的一种实现,可以设置在某种超时或者失败情形下断开依赖调用或者返回指定逻辑,从而提高分布式系统的稳定性. 生活中举个例子,如电力过载保护器,当电流过大的的时候,出问题,过载器会自动断开,从而保护电器不受烧坏.因此Hystrix请求熔