HDOJ题目地址:传送门
A1 = ?
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6965 Accepted Submission(s): 4330
Problem Description
有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).
若给出A0, An+1, 和 C1, C2, .....Cn.
请编程计算A1 = ?
Input
输入包括多个测试实例。
对于每个实例,首先是一个正整数n,(n <= 3000); 然后是2个数a0, an+1.接下来的n行每行有一个数ci(i = 1, ....n);输入以文件结束符结束。
Output
对于每个测试实例,用一行输出所求得的a1(保留2位小数).
Sample Input
1 50.00 25.00 10.00 2 50.00 25.00 10.00 20.00
Sample Output
27.50 15.00
因为:Ai=(Ai-1+Ai+1)/2 - Ci,
- A1=(A0 +A2 )/2 - C1;
- A2=(A1 + A3)/2 - C2 , ...
- => A1+A2 = (A0+A2+A1+A3)/2 - (C1+C2)
- 2[(A1+A2)+(C1+C2)] = A0+A2+A1+A3;
- A1+A2 = A0+A3 - 2(C1+C2);
- => A1+A2 = A0+A3 - 2(C1+C2)
- 同理可得:
- A1+A1 = A0+A2 - 2(C1)
- A1+A2 = A0+A3 - 2(C1+C2)
- A1+A3 = A0+A4 - 2(C1+C2+C3)
- A1+A4 = A0+A5 - 2(C1+C2+C3+C4)
- ...
- A1+An = A0+An+1 - 2(C1+C2+...+Cn)
- ----------------------------------------------------- 左右求和
- (n+1)A1+(A2+A3+...+An) = nA0 +(A2+A3+...+An) + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)
- => (n+1)A1 = nA0 + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)
- => A1 = [nA0 + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)]/(n+1)
#include <iostream> #include <cstdio> using namespace std; int main (){ int i,j,n; double sum; while (scanf("%d",&n)!=EOF){ sum=0; double a[3500],c[3500],d; scanf("%lf%lf",&a[0],&a[n+1]); for (i=1; i<=n; i++) scanf("%lf",&c[i]); a[1]=n*a[0]+a[n+1]; for (i = n, j = 1; i >=1&&j <= n; j++,i--) sum += i*c[j]; a[1] = (a[1] - 2*sum)/(n+1); printf ("%.2lf\n",a[1]); } return 0; }
时间: 2024-11-05 12:37:24