hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)

题意:有一个递推式f(x)

当 x < 10    f(x) = x.
当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10)

同时ai(0<=i<=9) 不是 0 就是 1;

现在给你 ai 的数字,以及k和mod,请你算出 f(x)%mod 的结果是多少

思路:线性递推关系是组合计数中常用的一种递推关系,如果直接利用递推式,需要很长的时间才能计算得出,时间无法承受,但是现在我们已知  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),那么我们可以根据这个式子构造一个矩阵来解决这得问题

Fn=A×Fn-1 ,其中Fn={f(x-10)  ,A={0 1 0 0 0 0 0 0 0 0 0

f(x-9)           0 0 1 0 0 0 0 0 0 0 0

f(x-8)           0 0 0 1 0 0 0 0 0 0 0

........           .................

f(x)}            0 a9 a8 a7 ........... a0}

在利用矩阵快速幂一顿套模板,最后得到矩阵ANS,和ANS中的a0‘ a1‘....a9‘,我们最后的答案就是a0‘*f(9)+a2‘*f(8)...a9‘*f(0);

代码:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

typedef long long ll;
const int N=11,M=11,P=11;
//const int MOD=1000000007;
int MOD;
struct  Matrix
{
    ll m[N][N];
};

Matrix A;
Matrix I;

Matrix multi(Matrix a,Matrix b)
{
    Matrix ans;
    for(int i=0;i<N;i++)
    {
       for(int j=0;j<M;j++)
       {
          ans.m[i][j]=0;
          for(int k=0;k<P;k++)
          {
             ans.m[i][j]+=a.m[i][k]*b.m[k][j]%MOD;
          }
          ans.m[i][j]%=MOD;
       }
    }
    return ans;
}

Matrix power(Matrix a,int k)
{
    Matrix ans=I,p=a;
    while(k)
    {
      if(k&1)
      {
        ans=multi(ans,p);
      }
      k>>=1;
      p=multi(p,p);
    }
    return ans;
}

int main(int argc, char const *argv[])
{
    int a[10];
    ll k;
    while(scanf("%lld %lld",&k,&MOD)!=-1)
    {
       for(int i=0;i<10;i++)
       {
         scanf("%d",&a[i]);
       }
       for(int i=0;i<N;i++)
       {
          for(int j=0;j<M;j++)
          {
             I.m[i][j]=0;
             if(i==j)
             {
                I.m[i][j]=1;
             }
          }
       }
       for(int i=0;i<N-1;i++)
       {
          for(int j=0;j<M;j++)
          {
              A.m[i][j]=0;
              if(i+1==j)
              {
                A.m[i][j]=1;
              }
          }
       }
       A.m[N-1][0]=0;
       for(int i=1;i<N;i++)
       {
          A.m[N-1][i]=a[10-i];
       }
       Matrix ans = power(A,k-9);
       ll num=0;
       for(int i=N-1;i>=1;i--)
       {
           num=(num+ans.m[N-1][i]*(i-1))%MOD;
       }
       cout<<num<<endl;
    }
    return 0;
}
时间: 2024-12-09 01:50:01

hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)的相关文章

hdu 1757 A Simple Math Problem 构造矩阵

题意:函数f(x), 若 x < 10 f(x) = x. 若 x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); 且 ai(0<=i<=9) 仅为 0 或 1 . 给定k,m,求f(k)%m; 思路:求一个递推函数的函数值,显然是矩阵快速幂,矩阵构造方法如下: #include<cstdio> #include<cstring> #include<al

hdu 1757 A Simple Math Problem (乘法矩阵)

A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2441    Accepted Submission(s): 1415 Problem Description Lele now is thinking about a simple function f(x).If x < 10 f(x) =

HDU 1757 A Simple Math Problem(矩阵快速幂)

题目地址:HDU 1757 终于会构造矩阵了.其实也不难,只怪自己笨..= =! f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10) 构造的矩阵是:(我代码中构造的矩阵跟这个正好是上下颠倒过来了) |0 1 0 ......... 0|    |f0|   |f1 | |0 0 1 0 ...... 0|    |f1|   |f2 | |...................1| *  |..| = |...|

HDU 1757 A Simple Math Problem (矩阵快速幂)

[题目链接]:click here~~ [题目大意]: If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); 问f(k)%m的值. [思路]:矩阵快速幂,具体思路看代码吧,注意一些细节. 代码: #include<bits/stdc++.h> using namespace std; typedef long long LL; const

HDU 1757 A Simple Math Problem(矩阵快速幂模板)

题意:题意很简单,不多说了. 思路: |f(10) |       |a0 a1 a2 ...a8 a9|    |f(9)|| f(9)  |       | 1   0   0 ... 0    0 |    |f(8)|| .....  |   =  | ..    ...    ...   ...    |     | ..   || f(2) |        | 0   0   0 ... 0    0|     |f(1)|| f(1) | | 0   0   0 ... 1  

HDU - 1757 A Simple Math Problem (构造矩阵)

Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); And ai(0<=i<=9) can only be 0 or 1 . Now, I will give a0 ~ a9 and two positive in

hdu 1757 A Simple Math Problem 矩阵

A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2831    Accepted Submission(s): 1693 Problem Description Lele now is thinking about a simple function f(x). If x < 10 f(x)

HDU 1757 A Simple Math Problem

A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 108 Accepted Submission(s): 77   Problem Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x.If

hdu 1757 A Simple Math Problem 矩阵快速幂

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 Lele now is thinking about a simple function f(x).If x < 10 f(x) = x.If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);And ai(0<=i<=9) can only be 0 or 1 .Now, I w