java 动态规划算法求解最长公共子串

最近在项目中碰到了这样的一个问题,要比较JS和CSS是否做了修改,先是想着借助第三方工具发现没找到,后面转念一想,这个问题不就是对两个文件的第一行求最大的公共子串嘛,既然是要求公共子串的最大长度,由此想到了动态规划算法。

代码是从网上C++改写过来的,感谢那位C++的兄弟,代码如下:

package dp;

/**
 * 用动态规划算法求解  最长公共子串
 * @author
 *
 */
public class LCSSuffix {

    private static String getLCSLength(String s,String t){
        int p = s.length() ;
        int q = t.length();

        String[][] num = new String[p][q];
        char char1 = ‘\0‘;
        char char2 = ‘\0‘ ;

        int len = 0 ;
        String lcs = "";
        for(int i = 0;i<p ;i++){
            for(int j=0;j<q;j++){
                char1 = s.charAt(i);
                char2 = t.charAt(j);
                if(char1 != char2){
                    num[i][j] = "";
                }else {
                    if(i==0 ) num[i][j] = String.valueOf(char1) ;
                    else if(j ==0)num[i][j] = String.valueOf(char2);
                    else num[i][j] = num[i-1][j-1] +String.valueOf(char1) ;

                    if(num[i][j].length() > len){
                        len = num[i][j].length();
                        lcs = num[i][j];
                    }else if(num[i][j].length() == len){
                        lcs = lcs +","+num[i][j] ;
                    }
                }
            }
        }
        return lcs ;
    }

    public static void main(String[] args) {
        String lcs = getLCSLength("baba","abab");
        System.out.println(lcs);
    }
}
时间: 2024-09-30 21:30:18

java 动态规划算法求解最长公共子串的相关文章

动态规划算法解最长公共子序列LCS问题

第一部分.什么是动态规划算法 ok,咱们先来了解下什么是动态规划算法. 动态规划一般也只能应用于有最优子结构的问题.最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似).简单地说,问题能够分解成子问题来解决. 动态规划算法分以下4个步骤: 描述最优解的结构 递归定义最优解的值 按自底向上的方式计算最优解的值   //此3步构成动态规划解的基础. 由计算出的结果构造一个最优解.   //此步如果只要求计算最优解的值时,可省略. 好,接下来,咱们

动态规划算法之:最长公共子序列 & 最长公共子串(LCS)

1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 2.最长公共子串 其实这是一个序贯决策问题,可以用动态规划来求解.我们采用一个二维矩阵来记录中间的结果.这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是"ba"或"ab") b a b c 0 0 0 a 0 1

《算法导论》读书笔记之动态规划—最长公共子序列 &amp; 最长公共子串(LCS)

From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 2.最长公共子串 其实这是一个序贯决策问题,可以用动态规划来求解.我们采用一个二维矩阵来记录中间的结果.这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是

利用后缀数组(suffix array)求最长公共子串(longest common substring)

摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其重要的优势在于可以编码简单,代码易于理解,适合快速实现. 首先,来说明一下,LCS通常指的是公共最长子序列(Longest Common Subsequence,名称来源参见<算法导论>原书第3版p223),而不是公共最长子串(也称为最长公共子串). 最长公共子串问题是在文本串.模式串中寻找共有的

最长公共子序列|最长公共子串|最长重复子串|最长不重复子串|最长回文子串|最长递增子序列|最大子数组和

参考:http://www.ahathinking.com/archives/124.html 最长公共子序列 1.动态规划解决过程 1)描述一个最长公共子序列 如果序列比较短,可以采用蛮力法枚举出X的所有子序列,然后检查是否是Y的子序列,并记录所发现的最长子序列.如果序列比较长,这种方法需要指数级时间,不切实际. LCS的最优子结构定理:设X={x1,x2,……,xm}和Y={y1,y2,……,yn}为两个序列,并设Z={z1.z2.……,zk}为X和Y的任意一个LCS,则: (1)如果xm=

最长公共子序列和最长公共子串

子串就是要连在一起的,而子序列就是满足这同时在1-n的母串中存在就好了. 比如abcdefg 子串有abc 子序列acdfg 动态规划 假设Z=<z1,z2,?,zk>是X与Y的LCS, 我们观察到 如果Xm=Yn,则Zk=Xm=Yn,有Zk?1是Xm?1与Yn?1的LCS: 如果Xm≠Yn,则Zk是Xm与Yn?1的LCS,或者是Xm?1与Yn的LCS. 因此,求解LCS的问题则变成递归求解的两个子问题.但是,上述的递归求解的办法中,重复的子问题多,效率低下.改进的办法--用空间换时间,用数组

动态规划 &amp; 最长公共子串算法(LCS)

求最长公共子串可以先求最长公共子串的长度,并且记录那些公共子串字符的长度以及字符,然后通过回溯可以找到所有的公共子串. 下面是求最长公共子串长度的动态规划方法. 1:决策,我们在最后一步需要做的决策是,是否要将A[n],B[m]加入公共子串序列中. 2:由 1 可知,若以DP[i][j]表示A[1..i] 与 B[1..j]的最长公共子串的长度,那么可以得到 (1) 若A[i] == B[j]  (即作出决策,将A[i],B[i]都加入公共子串) DP[i][j] = DP[i - 1][j -

算法作业6 动态规划 - 最长公共子串问题

问题描述:Given 2 sequences, X = x1,...,xm and Y = y1,...,yn, find a common subsequence whose length is maximum. Subsequence need not be consecutive, but must be in order. 程序思路: 使用递归的思路可以解决这个问题.设输入的两个子串为X[0…m - 1]和Y[0…n - 1],L(X[0…m - 1], Y[0…n - 1])为X和Y的

【算法导论之七】动态规划求解最长公共子序列

一.动态规划的概念 动态规划(Dynamic Programming)是通过组合子问题的解而解决整个问题的.分治算法是指将问题划分成一些独立的子问题,递归地求解各子问题,然后合并子问题的解而得到原始问题的解,与此不同,动态规划适用于子问题不是独立的情况,也就是各个子问题包含公共的子问题.在这种情况下,采用分治法会做许多不必要的工作,即重复地求解公共地子问题.动态规划算法对每个子问题只求解一次,将其结果保存在一张表中,从而避免每次遇到各个子问题时重新计算答案. 动态规划通常应用于最优化问题.此类问