3049 舞蹈家怀特先生
时间限制: 1 s
空间限制: 64000 KB
题目等级 : 黄金 Gold
题目描述 Description
怀特先生是一个大胖子。他很喜欢玩跳舞机(Dance Dance Revolution, DDR),甚至希望有一天人家会脚踏“舞蹈家怀特先生”。可惜现在他的动作根本不能称作是在跳舞,尽管每次他都十分投入的表演。这也难怪,有他这样的体型,玩跳舞机是相当费劲的。因此,他希望写一个程序来安排舞步,让他跳起来轻松一些,至少不要每次都汗流浃背。
DDR的主要内容是用脚来踩踏板。踏板有四个方向的箭头,用1 (Up)、2 (Left)、3 (Down)、4 (Right)来代表,中间位置由0来代表。每首歌曲有一个箭头序列,游戏者必须按照或这个序列一次用某一只脚踩相应的踏板。在任何时候,两只脚都不能在同一踏板上,但可以同时待在中心位置0。
每一个时刻,它必须移动而且只能移动他的一只脚去踩相应的箭头,而另一只脚不许移动。跳完一首曲子之后,怀特先生会计算他所消耗的体力。从中心移动到任何一个箭头耗费2单位体力,从任何一个箭头移动到相邻箭头耗费3单位体力,移动到相对的箭头(1和3相对,2和4相对)耗费4单位体力,而留在原地再踩一下只需要1单位。怀特先生应该怎样移动他的双脚(即,对于每个箭头,选一只脚去踩它),才能用最少的体力完成一首给定的舞曲呢?
例如,对于箭头序列Left (2), Left (2), Up (1), Right (4),他应该分别用左、左、右、右脚去踩,总的体力耗费为2+1+2+3=8单位。
输入描述 Input Description
第一行N,表示有N个时刻 1<=N<=10000
第二到n+1行,每行一个数,表示需要踩得版
输出描述 Output Description
一个数,最小消耗体力
样例输入 Sample Input
2
1
1
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
n<=10000
动态规划!
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<sstream> #include<algorithm> #include<queue> #include<deque> #include<iomanip> #include<vector> #include<cmath> #include<map> #include<stack> #include<set> #include<memory> #include<list> #include<string> using namespace std; typedef long long LL; typedef unsigned long long ULL; #define MAXN 10005 #define L 31 #define INF 1000000009 #define eps 0.00000001 /* dp[k][x][y] 表示第k步,左脚在x 状态 右脚在y 状态 */ //状态 0,1,2,3 上下左右 4表示在中间 int dp[MAXN][5][5], n; int a[MAXN]; int dist(int f, int t)//计算状态之间的权值 { if (f == 4) return 2; if (t == (f + 1) % 4 || t == (f - 1 + 4) % 4) return 3; if (f == t) return 1; if (t == (f + 2) % 4 || t == (f - 2 + 4) % 4) return 4; } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]), a[i]--; memset(dp, INF, sizeof(dp)); dp[0][4][4] = 0; for (int i = 0; i < n; i++) { for (int x = 0; x < 5; x++) { for (int y = 0; y < 5; y++) { dp[i + 1][a[i]][y] = min(dp[i + 1][a[i]][y], dp[i][x][y] + dist(x, a[i])); dp[i + 1][x][a[i]] = min(dp[i + 1][x][a[i]], dp[i][x][y] + dist(y, a[i])); } } } int ans = INF; for (int x = 0; x < 5; x++) for (int y = 0; y < 5; y++) ans = min(dp[n][x][y], ans); printf("%d\n", ans); }