python函数:迭代器和生成器

python函数:迭代器和生成器

迭代器和生成器是函数中的一大重点,务必掌握,何为迭代?何为迭代器?

预习:

处理文件,用户指定要查找的文件和内容,将文件中包含要查找内容的每一行都输出到屏幕(使用生成器)

一、迭代器

for i in 50:
    print(i)
#运行结果:
# Traceback (most recent call last):
#   File "G:/python/python代码/八月/day2 迭代器生成器/3迭代器.py", line 8, in <module>
#     for i in 50:
# TypeError: ‘int‘ object is not iterable

报错:

TypeError: ‘int‘ object is not iterable

类型报错:‘int‘对象是不可迭代的    何为迭代?

iterable:可迭代的;迭代的;

可迭代的:从上面代码可以简单分析出能被for循环取值的就是可迭代,那么我们就可以初步总结出可迭代的类型:str、list、tuple、set、dict

可迭代的 ——对应的标志 拥有__iter__方法

print(‘__iter__‘ in dir([1,2,3]))  #判断一个变量是不是一个可迭代的

可迭代协议

可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。



二、迭代器

__iter__方法作用:

 迭代器

iterator:迭代器;迭代程序

迭代器协议:必须拥有__iter__方法和__next__方法

通过iter(x)得到的结果就是一个迭代器,

x是一个可迭代的对象

在for循环中,就是在内部调用了__next__方法才能取到一个一个的值。

__next__的精髓:

 __next__方法的使用精髓

如果我们一直取next取到迭代器里已经没有元素了,就会报错(抛出一个异常StopIteration),告诉我们,列表中已经没有有效的元素了。这个时候,我们就要使用异常处理机制来把这个异常处理掉。try_except异常处理机制只做了解,不是本章重点,会面会详细讲解。

判断是否可迭代和迭代器的简洁方法:

 判断可迭代和迭代器

不管是一个迭代器还是一个可迭代对象,都可以使用for循环遍历

迭代器出现的原因 帮你节省内存



三、生成器

迭代器大部分都是在python的内部去使用的,我们直接拿来用就行了

我们自己写的能实现迭代器功能的东西就叫生成器。

1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

生成器Generator:

本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

特点:惰性运算,开发者自定义

 生成器函数

生成器的好处:不会一下子在内存中生成太多数据

其它应用:

 生成器监听文件输入的例子

 计算移动平均值简单

 计算移动平均值升级_生成器激活装饰器

 yield from



四、列表推导式和生成器表达式

 列表推导式和生成器表达式

使用生成器的优点:

1、延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。

2、提高代码可读性

#列表解析
sum([i for i in range(100000000)])#内存占用大,机器容易卡死
#生成器表达式
 
 sum(i for i in range(100000000))#几乎不占内存

总结:

1、把列表解析的[]换成()得到的就是生成器表达式

2、列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3、Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和

print(sum([1,2,3]))
print(sum(range(1,4)))
print(sum(x ** 2 for x in range(4)))
print(sum([x ** 2 for x in range(4)]))

预习答案和思维导图明天更新...

时间: 2024-12-13 09:34:53

python函数:迭代器和生成器的相关文章

python函数-迭代器和生成器

一 迭代器 1.1 认识迭代器 什么是迭代 什么是迭代器 迭代器 如何从列表.字典中取值的 index索引 ,key for循环 凡是可以使用for循环取值的都是可迭代的 可迭代协议 :内部含有__iter__方法的都是可迭代的 迭代器协议 :内部含有__iter__方法和__next__方法的都是迭代器 一个生成器 只能取一次生成器在不找它要值的时候始终不执行当他执行的时候,要以执行时候的所有变量值为准 l = [1,2,3] while True: lst = l.__iter__() ##

python函数(迭代器,生成器)

迭代器 索引:1 = [1,2,3] for循环:for i in l: i print(dir([]))告诉列表拥有的所有方法 只要是能被for循环的数据类型 就一定拥有__iter__方法print([].__iter__())一个列表执行了__iter__()之后的返回值就是一个迭代器 print(dir([])) print(dir([].__iter__())) print(set(dir([].__iter__())) - set(dir([]))) Iterable 可迭代的 --

python之迭代器与生成器

python之迭代器与生成器 可迭代 假如现在有一个列表,有一个int类型的12345.我们循环输出. list=[1,2,3,4,5] for i in list: print(i) for i in 12345: print(i) 结果: Traceback (most recent call last): File "C:/Pycham/生成器与迭代器/test1.py", line 6, in <module> for i in 12345: TypeError:

python基础----迭代器、生成器、协程函数

一.什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退) 2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法) 3.协议是一种约定,可迭代对象实现了迭代器协议,python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象. 二,为什么要用迭代器 优点: 1:迭代器提供了一种不依赖于索引的取值方式,

Python 函数对象、生成器 、装饰器、迭代器、闭包函数

一.函数对象 正确理解 Python函数,能够帮助我们更好地理解 Python 装饰器.匿名函数(lambda).函数式编程等高阶技术. 函数(Function)作为程序语言中不可或缺的一部分,太稀松平常了.但函数作为第一类对象(First-Class Object)却是 Python 函数的一大特性.那到底什么是第一类对象(First-Class Object)呢? 在 Python 中万物皆为对象,函数作为第一类对象有如下特性: #函数身为一个对象,拥有对象模型的三个通用属性:id(内存地址

Python的迭代器和生成器

先说迭代器,对于string.list.dict.tuple等这类容器对象,使用for循环遍历是很方便的就,在后台for语句对容器对象对象调用iteration()函数,这是python的内置函数,iter()会返回一个定义next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数.在没有后续元素是,调用next()会抛出一个StopIteration异常 上面说的都是python自带的容器对象,它们都实现了相应的迭代器方法,自定义类的遍历怎么实现,方法是

Python的迭代器与生成器

Python中的生成器和迭代器方便好用,但是平时对生成器和迭代器的特性掌握的不是很到位,今天将这方面的知识整理一下. 迭代器 为了更好的理解迭代器和生成,我们需要简单的回顾一下迭代器协议的概念. 迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退) 2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法) 3.协议是一种约定,可迭代对象

Python之迭代器、生成器、装饰器和递归

一.迭代器&生成器 1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束. 迭代器只能往前不会后退,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素.迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁.这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件 特点: 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容 不能随机访问集合中的某个值 ,只能从头

python中迭代器和生成器。

前言:很多python教程中,对python的解释不容易理解,本文记录自己的理解和体会,是对迭代器和生成器的初步理解. 迭代器: 迭代器的实质是实现了next()方法的对象,常见的元组.列表.字典都是迭代器. 迭代器中重点关注两种方法: __iter__方法:返回迭代器自身.可以通过python内建函数iter()调用. __next__方法:当next方法被调用的时候,迭代器会返回它的下一个值,如果next方法被调用,但迭代器没有只可以返回,就会引发一个StopIteration异常.该方法可

【Python】迭代器、生成器、yield单线程异步并发实现详解

转自http://blog.itpub.net/29018063/viewspace-2079767 大家在学习python开发时可能经常对迭代器.生成器.yield关键字用法有所疑惑,在这篇文章将从理论+程序调试验证的方式详细讲解这部分知识,话不多说,直接进入主题. 一.迭代器(Iterater):     首先介绍迭代器,迭代器是访问集合元素的一种方式,迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.是不是觉得跟for循环很像?但是迭代器有几个特性需记住:    1.访问者