【BZOJ4825】[Hnoi2017]单旋 线段树+set

【BZOJ4825】[Hnoi2017]单旋

Description

H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构。伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能。有一天,邪恶的“卡”带着他的邪恶的“常数”来企图毁灭 H 国。“卡”给 H 国的人洗脑说,splay 如果写成单旋的,将会更快。“卡”称“单旋 splay”为“spaly”。虽说他说的很没道理,但还是有 H 国的人相信了,小 H 就是其中之一,spaly 马上成为他的信仰。 而 H 国的国王,自然不允许这样的风气蔓延,国王构造了一组数据,数据由 m 个操作构成,他知道这样的数据肯定打垮 spaly,但是国王还有很多很多其他的事情要做,所以统计每个操作所需要的实际代价的任务就交给你啦。

数据中的操作分为五种:

1. 插入操作:向当前非空 spaly 中插入一个关键码为 key 的新孤立节点。插入方法为,先让 key 和根比较,如果 key 比根小,则往左子树走,否则往右子树走,如此反复,直到某个时刻,key 比当前子树根 x 小,而 x 的左子树为空,那就让 key 成为 x 的左孩子; 或者 key 比当前子树根 x 大,而 x 的右子树为空,那就让 key 成为 x 的右孩子。该操作的代价为:插入后,key 的深度。特别地,若树为空,则直接让新节点成为一个单个节点的树。(各节点关键码互不相等。对于“深度”的解释见末尾对 spaly 的描述)。

2. 单旋最小值:将 spaly 中关键码最小的元素 xmin 单旋到根。操作代价为:单旋前 xmin 的深度。(对于单旋操作的解释见末尾对 spaly 的描述)。

3. 单旋最大值:将 spaly 中关键码最大的元素 xmax 单旋到根。操作代价为:单旋前 xmax 的深度。

4. 单旋删除最小值:先执行 2 号操作,然后把根删除。由于 2 号操作之后,根没有左子树,所以直接切断根和右子树的联系即可(具体见样例解释)。 操作代价同 2 号操 作。

5. 单旋删除最大值:先执行 3 号操作,然后把根删除。 操作代价同 3 号操作。

对于不是 H 国的人,你可能需要了解一些 spaly 的知识,才能完成国王的任务:

a. spaly 是一棵二叉树,满足对于任意一个节点 x,它如果有左孩子 lx,那么 lx 的关键码小于 x 的关键码。如果有右孩子 rx,那么 rx 的关键码大于 x 的关键码。

b. 一个节点在 spaly 的深度定义为:从根节点到该节点的路径上一共有多少个节点(包括自己)。

c. 单旋操作是对于一棵树上的节点 x 来说的。一开始,设 f 为 x 在树上的父亲。如果 x 为 f 的左孩子,那么执行 zig(x) 操作(如上图中,左边的树经过 zig(x) 变为了右边的树),否则执行 zag(x) 操作(在上图中,将右边的树经过 zag(f) 就变成了左边的树)。每当执 行一次 zig(x) 或者 zag(x),x 的深度减小 1,如此反复,直到 x 为根。总之,单旋 x 就是通过反复执行 zig 和 zag 将 x 变为根。

Input

第一行单独一个正整数 m。

接下来 m 行,每行描述一个操作:首先是一个操作编号 c∈[1,5],即问题描述中给出的五种操作中的编号,若 c = 1,则再输入一个非负整数 key,表示新插入节点的关键码。1≤m≤10^5,1≤key≤10^9所有出现的关键码互不相同。任何一个非插入操作,一定保证树非空。在未执行任何操作之前,树为空

Output

输出共 m 行,每行一个整数,第 i 行对应第 i 个输入的操作的代价。

Sample Input

5
1 2
1 1
1 3
4
5

Sample Output

1
2
2
2
2

题解:容易发现,只有单旋,只旋转最大(小)值的spaly满足以下性质:

插入:直接找到x的前驱和后继,要么令x为前驱的右儿子,要么令x为后继的左儿子,判断一下即可

旋转:以旋转最小值为例,发现除了它本身的深度变成0,它右儿子的深度不变以外,其他所有的点的深度都+1。旋转后,x的右儿子变成fa[x]的左儿子,原来的根变成x的右儿子,其余的父子关系均不发生改变。

删除:旋转后直接令所有的点深度-1即可。

其次,因为spaly的中序遍历为升序,所以x的右儿子是一段连续的区间。

因此为了实现以上操作,我们只需要维护前驱后继,区间修改,单点查询,删点加点即可。其实直接用splay来维护比较好,但我比较懒,用的权值线段树维护区间,用的set维护前驱后继。

注意:当x是根的时候就尽量不要转了,否则太麻烦。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <set>
#include <algorithm>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=100010;
struct node
{
	int v,org;
}num[maxn];
int n,m,root;
int pa[maxn],pb[maxn];
int siz[maxn<<2],ch[maxn][2],fa[maxn],sum[maxn<<2],tag[maxn<<2];
int pre,dpre,suf,dsuf;
set<int> s;
bool cmp(node a,node b)
{
	return a.v<b.v;
}
int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
void pushdown(int x)
{
	if(tag[x])
	{
		sum[lson]+=siz[lson]*tag[x],sum[rson]+=siz[rson]*tag[x],tag[lson]+=tag[x],tag[rson]+=tag[x];
		tag[x]=0;
	}
}
void pushup(int x)
{
	siz[x]=siz[lson]+siz[rson];
	sum[x]=sum[lson]+sum[rson];
}
void ins(int l,int r,int x,int pos,int v)
{
	if(l==r)
	{
		sum[x]=v,siz[x]=(!v)?0:1;
		return ;
	}
	pushdown(x);
	int mid=l+r>>1;
	if(pos<=mid)	ins(l,mid,lson,pos,v);
	else	ins(mid+1,r,rson,pos,v);
	pushup(x);
}
void updata(int l,int r,int x,int a,int b,int v)
{
	if(a<=l&&r<=b)
	{
		sum[x]+=siz[x]*v,tag[x]+=v;
		return ;
	}
	pushdown(x);
	int mid=l+r>>1;
	if(a<=mid)	updata(l,mid,lson,a,b,v);
	if(b>mid)	updata(mid+1,r,rson,a,b,v);
	pushup(x);
}
int query(int pos)
{
	int l=1,r=n,mid,x=1;
	while(l<r)
	{
		mid=l+r>>1,pushdown(x);
		if(pos<=mid)	x=lson,r=mid;
		else	x=rson,l=mid+1;
	}
	return sum[x];
}
int main()
{
	m=rd();
	int i,a,b,c;
	set<int>::iterator it;
	for(i=1;i<=m;i++)
	{
		pa[i]=rd();
		if(pa[i]==1)	num[++n].v=rd(),num[n].org=i;
	}
	sort(num+1,num+n+1,cmp);
	for(i=1;i<=n;i++)	pb[num[i].org]=i;
	for(i=1;i<=m;i++)
	{
		switch(pa[i])
		{
			case 1:
			{
				it=s.upper_bound(pb[i]),b=(it==s.end())?0:(*it),a=(it==s.begin())?0:(*(--it));
				s.insert(pb[i]);
				if(!a&&!b){printf("1\n"),ins(1,n,1,pb[i],1),root=pb[i];	break;}
				if(a&&!ch[a][1])	c=query(a)+1,printf("%d\n",c),fa[pb[i]]=a,ch[a][1]=pb[i];
				else	c=query(b)+1,printf("%d\n",c),fa[pb[i]]=b,ch[b][0]=pb[i];
				ins(1,n,1,pb[i],c);
				break;
			}
			case 2:
			{
				it=s.begin(),a=*it;
				printf("%d\n",query(a));
				if(a==root)	break;
				updata(1,n,1,fa[a],n,1),ch[fa[a]][0]=ch[a][1];
				if(ch[a][1])	fa[ch[a][1]]=fa[a];
				fa[a]=0,fa[root]=a,ch[a][1]=root,root=a,ins(1,n,1,a,1);
				break;
			}
			case 3:
			{
				it=s.end(),a=*(--it);
				printf("%d\n",query(a));
				if(a==root)	break;
				updata(1,n,1,1,fa[a],1),ch[fa[a]][1]=ch[a][0];
				if(ch[a][0])	fa[ch[a][0]]=fa[a];
				fa[a]=0,fa[root]=a,ch[a][0]=root,root=a,ins(1,n,1,a,1);
				break;
			}
			case 4:
			{
				it=s.begin(),a=*it,s.erase(it);
				printf("%d\n",query(a));
				if(fa[a])	ch[fa[a]][0]=ch[a][1];
				else	root=ch[a][1];
				if(ch[a][1])	fa[ch[a][1]]=fa[a];
				updata(1,n,1,a,(!fa[a])?n:(fa[a]-1),-1);
				fa[a]=0,ins(1,n,1,a,0);
				break;
			}
			case 5:
			{
				it=s.end(),a=*(--it),s.erase(it);
				printf("%d\n",query(a));
				if(fa[a])	ch[fa[a]][1]=ch[a][0];
				else	root=ch[a][0];
				if(ch[a][0])	fa[ch[a][0]]=fa[a];
				updata(1,n,1,(!fa[a])?1:(fa[a]+1),a,-1);
				fa[a]=0,ins(1,n,1,a,0);
				break;
			}
		}
	}
	return 0;
}
时间: 2024-12-08 11:49:53

【BZOJ4825】[Hnoi2017]单旋 线段树+set的相关文章

bzoj4825 [Hnoi2017]单旋

4825: [Hnoi2017]单旋 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 520  Solved: 247[Submit][Status][Discuss] Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天,邪恶的"卡"带着 他的邪恶的"常数"

[2017.11.29]BZOJ4825[Hnoi2017]单旋

1 #include<bits/stdc++.h> 2 #define M 100010 3 #define RG register 4 #define inf 0x3f3f3f3f 5 using namespace std; 6 bool rev[M]; 7 set<int> tr; 8 set<int>::iterator it; 9 int m,rt,tp,big,cnt,cur,dau,dep,loc,sml,sum,tmp,c[M],fa[M],sz[M],

BZOJ4825:[HNOI2017]单旋

4825: [Hnoi2017]单旋 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 550  Solved: 258[Submit][Status][Discuss] Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天,邪恶的“卡”带着 他的邪恶的“常数”来企图毁灭 H 国.“卡”给

[HNOI2017]单旋

标签:线段树+set 题解: 此题的标题为splay,所以我们可以排除这道题的正解是splay的可能性.然后我们发现只有最值的单旋,而且,三点一线不需要先旋转父亲.通过手玩我们可以发现,就是把最值直接移到最顶端作为根节点,然后其他的点以及他们之间的父子关系全部都没有变化.于是就只要求深度了. 我们发现,最小值,他没有左子树,而右子树在单旋之后深度不变(-1+1),而其他的点深度全部+1.如果再删掉根节点,全部的点深度-1.于是就可以使用线段树,维护每一个点的深度. 首先输入所有的操作,对于全部的

HNOI2017单旋

单旋 这道题做法贼多,LCT,splay,线段树什么的貌似都行. 像我这种渣渣只会线段树了(高级数据结构学了也不会用). 首先离线所有操作,因为不会有两个点值重复,所以直接离散. 一颗线段树来维护所有点的深度,并将所有值丢进\(set\)中. 插入操作,在set找到前驱后继,前驱没有右儿子就放前驱右儿子,否则放后继左儿子,同时用\(ch\)和\(fa\)假装模拟树的形态. 旋转操作,在\(set\)里找到节点,可以发现旋转操作该点儿子深度不变,其他点深度加一,处理一下父子关系,然后线段树修改区间

[AH2017/HNOI2017]单旋

题目描述 H国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了H国的必修技能.有一天,邪恶的"卡"带着他的邪恶的"常数"来企图毁灭H国."卡"给H国的人洗脑说,splay如果写成单旋的,将会更快."卡"称"单旋splay"为"spaly".虽说他说的很没道理,但还是有H国的人相信

BZOJ 4825 [Hnoi2017]单旋

题解:LCT维护Splay形态 Splay后发现只会有几个点发生变化,用LCT维护一下就可以了 在Splay中维护siz 还可以用Splay维护DFS序,旋转后DFS序不变,深度以子树为单位变化 天真的我以为直接模拟Splay可以A掉QWQ #include<iostream> #include<cstdio> #include<cstring> #include<map> using namespace std; const int maxn=100009

BZOJ4826 [Hnoi2017]影魔 【线段树 + 单调栈】

题目链接 BZOJ4826 题解 蒟蒻智力水平捉急orz 我们会发现相邻的\(i\)和\(j\)贡献一定是\(p1\),可以很快算出来[然而我一开始忘了考虑调了半天] 我们现在只考虑不相邻的 我们只需要找出所有产生贡献的\(i,j\)即可 我们发现每一个产生贡献的\(i,j\)都能对应到一个三元组\((i,k,j)\),分别对应区间的最大值,次大值,第三大值 我们枚举中间位置\(i\),找到\(i\)左边第一个比\(i\)大的位置\(L[i]\),右边第一个比\(i\)大的位置\(R[i]\)

AC日记——「HNOI2017」单旋 LiBreOJ 2018

#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; int op[maxn],ki[maxn],bi[maxn],cnt,size,n,ch[maxn]