E2PROM芯片的特点及作用,总线

串行E2PROM是可在线电擦除和电写入的存储器,具有体积小、接口简单、数据保存可靠、可在线改写、功耗低等特点,而且为低电压写入,在单片机系统中应用十分普遍。  

 串行E2PROM按总线形式分为三种,即I2C总线、Microwire总线及SPI总线三种。

 一、I2C总线型   I2C总线,是INTER INTEGRATED CIRCUIT BUS的缩写,即“内部集成电路总线”。I2C总线采用时钟(SCL)和数据(SDA)两根线进行数据传输。

1 引脚  

  SDA是串行数据脚。该脚为双向脚,漏极开路,用于地址、数据的输入和数据的输出,使用时需加上拉电阻。

  SCL是时钟脚。该脚为器件数据传输的同步时钟信号。

  SDA和SCL脚均为施密特触发输入,并有滤波电路,可有效抑制噪声尖峰信号,保证在总线噪声严重时器件仍能正常工作。

  在单片机系统中,总线受单片机控制。单片机产生串行时钟(SCL),控制总线的存取,发送STRAT和STOP信号。   

2 总线协议

  仅当总线不忙(数据和时钟均保持高电平)时方能启动数据传输。

  在数据传输期间,时钟(SCL)为高电平时数据(SDA)必须保持不变。在SCL为高电平时数据线(SDA)从高电平跳变到低电平,为开始数据传输(START)的条件,开始数据传输条件后所有的命令有效;SCL为高电平时,数据(SDA)从低电平跳变到高电平,为停止数据传输(STOP)的条件,停止数据传输条件后所有的操作结束。

  开始数据传输START后、停止数据传输STOP前,SCL高电平期间,SDA上为有效数据。

  字节写入时,每写完一个字节,送一位传送结束信号ACK,直至STOP;读出时,每读完一个字节,送一位传送结束信号ACK,但STOP前一位结束时不送ACK信号。   

3 器件寻址

  START后,单片机发送一个控制字,该控制字包括Start位(S)、受控地址7位,读写(R/W)选择位(“1”为读,“0”为写)及传送结束位ACK。  

4 写操作 

  单片机送出开始信号后,接着送器件码(7位)、R/W位(“0”),表示ACK位后面为待写入数据字节的字地址和待写入数据字节,然后结束一个字节的写入。即S+写控制字(R/W位为“0”)+ACK(“0”)+字地址+ACK(“0”)+写入数据+ACK(“0”)+STOP。  

5 读操作

  读操作有三种,读当前地址的内容、读指定地址的内容、读指定起始地址后的若干字节的内容。   读当前地址的内容为:S+读控制字(R/W位为“1”)+ACK+读出数据+no ACK+STOP   读指定地址的内容为:S+写控制字(R/W位为“0”)+ACK+写入数据+ACK+读控制字(R/W位为“1”)+ACK+读出数据+no ACK+STOP   读指定起始地址后的若干字节的内容为:S+写控制字(R/W位为“0”)+ACK+写入数据+ACK+读控制字(R/W位为“1”)+ACK+读出数据(1)+ACK+……+读出数据(n+x)+noACK+STOP   24XX系列串行E2PROM存储芯片与单片机硬件接口只有SCL和SDA两根线,非常简单

二、Microwire总线型   Microwire总线采用时钟(CLK)、数据输入(DI)、数据输出(DO)三根线进行数据传输,接口简单。Microchip公司的93XXX系列串行E2PROM存储容量从1k bit(×8/×16)至16k bit(×8/×16),采用Microwire总线结构。产品采用先进的CMOS技术,是理想的低功耗非易失性存储器器件。   

1 引脚

  93XX系列串行E2PROM的产品很多,附图是93AA46型1k 1.8V Microwire总线串行E2PROM的引脚图。   CS是片选输入,高电平有效。CS端低电平,93AA46为休眠状态。但若在一个编程周期启动后,CS由高变低,93AA46将在该编程周期完成后立即进入休眠状态。在连续指令与连续指令之间,CS必须有不小于250ns(TCSL)的低电平保持时间,使之复位(RESET),芯片在CS为低电平期间,保持复位状态。   CLK是同步时钟输入,数据读写与CLK上升沿同步。对于自动定时写周期不需要CLK信号。   DI是串行数据输入,接受来自单片机的命令、地址和数据。   DO是串行数据输出,在DO端需加上拉电阻。   ORG是数据结构选择输入,当ORG为高电平时选×16结构,ORG为低电平时选×8结构。  

 2 工作模式   根据单片机的不同命令,93AA46有7种不同的工作模式,附表给出在ORG=1(×16结构)时的命令集(表中“S”为Start位)。ORG=0(×8结构),除在地址前加A6位或在地址后加一位“X”外,其余与附表相同。

三、 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO – 主设备数据输出,从设备数据输入
(2)SDI – 主设备数据输入,从设备数据输出
(3)SCLK – 时钟信号,由主设备产生
(4)CS – 从设备使能信号,由主设备控制
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。
最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。
AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及 /SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。
SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。
SPI协议举例
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。
那么第一个上升沿来的时候 数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。I2C总线  I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。

时间: 2024-10-25 16:02:37

E2PROM芯片的特点及作用,总线的相关文章

CPU缓存是位于CPU与内存之间的临时数据交换器,它的容量比内存小的多但是交换速度却比内存要快得多。CPU缓存一般直接跟CPU芯片集成或位于主板总线互连的独立芯片上

一.什么是CPU缓存 1. CPU缓存的来历 众所周知,CPU是计算机的大脑,它负责执行程序的指令,而内存负责存数据, 包括程序自身的数据.在很多年前,CPU的频率与内存总线的频率在同一层面上.内存的访问速度仅比寄存器慢一些.但是,这一局面在上世纪90年代被打破了.CPU的频率大大提升,但内存总线的频率与内存芯片的性能却没有得到成比例的提升.并不是因为造不出更快的内存,只是因为太贵了.内存如果要达到目前CPU那样的速度,那么它的造价恐怕要贵上好几个数量级.所以,CPU的运算速度要比内存读写速度快

E2PROM芯片24C02的读写程序

一.实验目的: 给24C02的内部RAM写入一组数据0xb0,数据从24C02内部RAM的0x01开始存放.然后再把这组数据读出来,来点亮LED灯,检验写入和读出是否正确. 二.理论知识准备: 下面我们先介绍一下I2C总线的相关理论知识. (一).I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好.目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保

题目12:计算机芯片的发展历史

引用: http://wenku.baidu.com/view/d1d46c0ef78a6529647d5331.html http://www.docin.com/p-230059948.html 基本概念 计算机芯片:芯片组决定了主板的功能,是主板的灵魂. 分类:北桥芯片.南桥芯片. 北桥芯片提供对CPU的类型和主频.内存的类型和最大容量.ISA/PCI/AGP插槽.ECC纠错等支持.南桥芯片则提供对KBC(键盘控制器).RTC(实时时钟控制器).USB(通用串行总线).Ultra DMA/

[转]什么是总线?什么是前端总线?

什么是总线?微机中总线一般有内部总线.系统总线和外部总线.内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连:而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连:外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连. 什么是前端总线:“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念,但是一直以来都被大家误认为这个名词不过是外频的另一个名称.我们所说的外频指的是CPU与主板连接的速度,这个概

总线概述及常见总线(转)

一. 总线概念 所谓总线(Bus),是指计算机设备和设备之间传输信息的公共数据通道.总线是连接计算机硬件系统内多种设备的通信线路,它的一个重要特征是由总线上的所有设备共享,可以将计算机系统内的多种设备连接到总线上.如果是某两个设备或设备之间专用的信号连线,就不能称之为总线.系统总线架构图如下所示: 微机中的总线分为数据总线.地址总线和控制总线3类.不同型号的CPU芯片,其数据总线.地址总线和控制总线的条数可能不同. 数据总线DB用来传送数据信息,是双向的.CPU既可通过DB从内存或输入设备读入数

总线接口与计算机通信

微机中总线一般有内部总线.系统总线和外部总线. 内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连: 系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连: 外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连. 计算机通信方式可以分为并行通信和串行通信,相应的通信总线被称为并行总线和串行总线. 并行通信速度快.实时性好,但由于占用的口线多,不适于小型化产品:串行通信速率虽低,但在数据通信吞吐量不是很大的

openwrt 增加RTC(MCP7940 I2C总线)驱动详解

一.硬件平台 1.1 控制器:MT7620(A9内核) 1.2 RTC芯片:MCP7940(I2C总线) 二.软件平台 2.1.开发环境:Ubuntu12.04 2.2.软件版本:openwrt 官方15.05版本SDK开发包(CHAOS CALMER 15.05版本) 三.功能说明 本文章所选择的目标芯片为MT7620,profile 选择的为"Xiaomi MiWiFi Mini ". 3.1.在openwrt 系统上,移植mcp7940的rtc芯片驱动. 3.2.在openwrt

单片网络接口芯片W5100的原理与应用

随着计算机网络技术的发展,作为全球最大计算机网络——I n t e r ac t已成为当今信息社会重要的基础信息设施.在工业测控.智能仪器.智能家庭等领域,大量应用嵌入式设备接人 I n t e r n e t的需求使得嵌入式 I n t e r ac t 技术日益成为研究的热点.嵌入式设备接人 I n t e r n e t的关键是如何在硬件资源有限的嵌入式设备中实现 T C P / I P协议簇.实现复杂的 T C P/ I P协议会占用其大量重要资源,这必然会影响嵌入式设备的性能,增加系统

RS485芯片介绍及典型应用电路

一.RS485基本知识 RS-485接口芯片已广泛应用于工业控制.仪器.仪表.多媒体网络.机电一体化产品等诸多领域.可用于RS-485接口的芯片种类也越来越多.如何在种类繁多的接口芯片中找到最合适的芯片,是摆在每一个使用者面前的一个问题.RS-485接口在不同的使用场合,对芯片的要求和使用方法也有所不同.使用者在芯片的选型和电路的设计上应考虑哪些因素,由于某些芯片的固有特性,通信中有些故障甚至还需要在软件上作相应调整,如此等等.希望本文对解决RS-485接口的某些常见问题有所帮助. 1 RS-4