A fine property of the non-empty countable dense-in-self set in the real line

A fine property of the
non-empty countable dense-in-self set in the real line

 

Zujin
Zhang

School
of Mathematics and Computer Science,

GannanNormalUniversity

Ganzhou
341000, P.R. China

[email protected]

MSC2010: 26A03.

Keywords: Dense-in-self set;
countable set.

Abstract:

Let E?R1

be non-empty, countable, dense-in-self, then we shall show that Eˉ?E

is dense in Eˉ

.

Introduction and the main
result

As is well-known, Q?R1

is countable, dense-in-self (that is, Q?Q=R1

); and R1?Q

is dense in R1

.

We generalize this fact as

Theorem 1.
Let E?R1

be non-empty, countable, dense-in-self, then Eˉ?E

is dense in Eˉ

.

Before proving Theorem 1, let us recall
several related definitions and facts.

Definition 2. A set E

is closed iff E?E

. A set E

is dense-in-self iff E?E

; that is, E

has no isolated points. A set E

is complete iff E=E

.

A well-known complete set is the Cantor set.
Moreover, we have

Lemma 3 ([I.P. Natanson, Theory of
functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E.
Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem
1).
A non-empty complete set E

has power c

; that is, there is a bijection between E

and R1

.

Lemma 4 ([I.P. Natanson, Theory
of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E.
Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem
7).
A complete set E

has the form

E=???n≥1(an,bn)??c,

where (ai,bi)

, (aj,bj)

(i≠j

) have no common points.

Proof of Theorem 1

Since E

is dense-in-self, we have E?E

, Eˉ=E

. Also, by the fact that E′′=E

, we see E

is complete, and has power c

. Note that E

is countable, we deduce E?E≠?

.

Now that E

is complete, we see by Lemma 4,

E′c=?n≥1(an,bn).

For ? x∈E

, ? δ>0

, we have

[x?δ,x+δ]∩E=([x?δ,x+δ]∩(E?E))∪([x?δ,x+δ]∩E).(1)

By analyzing the complement of [x?δ,x+δ]∩(E?E)

, we see [x?δ,x+δ]∩E

(minus {x?δ}

if x?δ

equals some an

, and minus {x+δ}

if x+δ

equals some bn

) is compelete, thus has power c

. Due to the fact that E

is countable, we deduce from (1)

that

[x?δ,x+δ]∩(E?E)≠?.

This completes the proof of Theorem
1.

A fine property of the non-empty countable dense-in-self set in
the real line,布布扣,bubuko.com

A fine property of the non-empty countable dense-in-self set in
the real line

时间: 2024-12-26 11:45:43

A fine property of the non-empty countable dense-in-self set in the real line的相关文章

python3.4 build in functions from 官方文档 翻译中

2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python interpreter has a number of functions and types built into it that are always available. They are listed here in alphabetical order.     Built-in Funct

2014年至今的博文目录(更新至2017年06月12日)

拓扑学中凝聚点的几个等价定义(2017-06-12 07:51) 江苏省2017年高等数学竞赛本二试题(含解答)(2017-06-10 20:59) 裴礼文数学分析中的典型问题与方法第4章一元函数积分学练习(2017-06-10 11:04) 2017年厦门大学第十四届景润杯数学竞赛试卷(数学类)评分标准(2017-06-05 15:31) 2017年华东师范大学数学竞赛(数学类)试题(2017-06-05 15:28) 裴礼文数学分析中的典型问题与方法第3章一元微分学练习(2017-05-30

php容易犯错的10个地方

原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.net/php-2056.html Common Mistake #1: Leaving dangling array references after foreach loops Not sure how to use foreach loops in PHP? Using references i

接触C# 反射

1.反射的概念详解[1] 1.1 理解C#中的反射 1.B超:大家体检的时候大概都做过B超吧,B超可以透过肚皮探测到你内脏的生理情况.这是如何做到的呢?B超是B型超声波,它可以透过肚皮通过向你体内 发射B型超声波,当超声波遇到内脏壁的时候就会产生一定的“回音”反射,然后把“回音”进行处理就可以显示出内脏的情况了(我不是医生也不是声学专家,不 知说得是否准确^_^). 2.地球内部结构:地球的内部结构大体可以分为三层:地壳.地幔和地核.地壳是固体,地核是液体,地幔则是半液半固的结构(中学地理的内容

org.apache.hadoop.conf-Configuration

终于遇到第一块硬骨头 Hadoop没有使用java.util.Properties管理配置文件,而是自己定义了一套配置文件管理系统和自己的API. 1 package org.apache.hadoop.conf; 2 3 import java.io.BufferedInputStream; 4 import java.io.DataInput; 5 import java.io.DataOutput; 6 import java.io.File; 7 import java.io.FileI

YASM User Manual

This document is the user manual for the Yasm assembler. It is intended as both an introduction and a general-purpose reference for all Yasm users. 1.?Introduction Yasm is a BSD-licensed assembler that is designed from the ground up to allow for mult

近期开发项目中用到的编码小技巧汇总说明

1.默认EF生成的连接字符串比较的长和怪异,若想使用普通的连接字符串来连接EF,则可以通过创建分部类,并重写一个构造函数,在构造函数中通过动态拼接EntityConnectionString得到EF所需的连接字符串,具代实现代码如下: public partial class DataEntities { private static ConcurrentDictionary<string, string> entityConnStrings = new ConcurrentDictionar

.net两个对象比较,抛出不一样字段的结果

现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summary> /// 最后修改时间 /// </summary> [Description("最后修改时间")] public DateTime PIUpdateTime { get; set; } 相关代码直接附上: public class OprateLogHelper

jmeter新增的函数说明

本文是对<零成本实现Web性能测试:基于Apache JMeter>中的<详解JMeter函数和变量>的补充,因为最近版本的jmeter增加了几个新函数.我更推荐大家去jmeter的官网查找函数定义.http://jmeter.apache.org/usermanual/functions.html Type of function Name Comment Since Information __threadNum get thread number 1.X Informatio