【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介

B  树 即二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

如:

但B树在经过多次插入与删除后,有可能导致不同的结构:

右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

B-树

是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] <K[i+1];

7.非叶子结点的指针:P[1], P[2], …,P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1],K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4.更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结

B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;

所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

红黑树rbtree二叉排序树

map 就是采用红黑树存储的,红黑树(RBTree)是平衡二叉树,其优点就是树到叶子节点深度一致,查找的效率也就一样,为logN.在实行查找,插入,删除的效率都一致,而当是全部静态数据时,没有太多优势,可能采用hash表各合适。

hash_map是一个hashtable占用内存更多,查找效率高一些,但是hash的时间比较费时。

总体来说,hash_map查找速度会比map快,而且查找速度基本和数据数据量大小,属于常数级别;而map的查找速度是log(n)级别。并不一定常数就比log(n)小,hash还有hash函数的耗时,明白了吧,如果你考虑效率,特别是在元素达到一定数量级时,考虑考虑hash_map。但若你对内存使用特别严格,希望程序尽可能少消耗内存,那么一定要小心,hash_map可能会让你陷入尴尬,特别是当你的hash_map对象特别多时,你就更无法控制了,而且hash_map的构造速度较慢。

现在知道如何选择了吗?权衡三个因素: 查找速度, 数据量,内存使用。

trie树Double Array字典查找树 

Trie树既可用于一般的字典搜索,也可用于索引查找。
每个节点相当于DFA的一个状态,终止状态为查找结束。有序查找的过程相当于状态的不断转换
对于给定的一个字符串a1,a2,a3,...,an.则

采用TRIE树搜索经过n次搜索即可完成一次查找。不过好像还是没有B树的搜索效率高,B树搜索算法复杂度为logt(n+1/2).当t趋向大,搜索效率变得高效。怪不得DB2的访问内存设置为虚拟内存的一个PAGE大小,而且帧切换频率降低,无需经常的PAGE切换。
   下面我们有and,as,at,cn,com这些关键词,那么如何构建trie树呢?

从上面的图中,我们或多或少的可以发现一些好玩的特性。

第一:根节点不包含字符,除根节点外的每一个子节点都包含一个字符。

第二:从根节点到某一节点,路径上经过的字符连接起来,就是该节点对应的字符串。

第三:每个单词的公共前缀作为一个字符节点保存。

使用范围:

既然学Trie树,我们肯定要知道这玩意是用来干嘛的。

第一:词频统计。

可能有人要说了,词频统计简单啊,一个hash或者一个堆就可以打完收工,但问题来了,如果内存有限呢?还能这么

玩吗?所以这里我们就可以用trie树来压缩下空间,因为公共前缀都是用一个节点保存的。

第二: 前缀匹配

就拿上面的图来说吧,如果我想获取所有以"a"开头的字符串,从图中可以很明显的看到是:and,as,at,如果不用trie树,

你该怎么做呢?很显然朴素的做法时间复杂度为O(N2) ,那么用Trie树就不一样了,它可以做到h,h为你检索单词的长度,

可以说这是秒杀的效果。

举个例子:现有一个编号为1的字符串”and“,我们要插入到trie树中,采用动态规划的思想,将编号”1“计入到每个途径的节点中,

那么以后我们要找”a“,”an“,”and"为前缀的字符串的编号将会轻而易举。

时间: 2024-12-28 08:05:56

【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介的相关文章

浅谈算法和数据结构: 九 平衡查找树之红黑树

原文:浅谈算法和数据结构: 九 平衡查找树之红黑树 前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.红黑树中将节点之间的链接分为两种不同类型,

【转】浅谈算法和数据结构: 九 平衡查找树之红黑树

http://www.cnblogs.com/yangecnu/p/3627386.html 前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.

浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B

平衡查找树(2-3-4 树)

二叉查找树(Binary Search Tree)在很多情况下可以良好的工作,但它的限制是最坏情况下的渐进运行时间为 O(n). 平衡查找树(Balanced Search Tree)的设计则是保证其高度在最坏的情况下为 O(log n),其插入.删除和查找可以实现渐进运行时间 O(log n). 现在其实存在很多种类的平衡查找树,常见的有 AVL树.红黑树.B 树等. 不同的平衡查找树的高度(height): AVL 树:高度 ≤ (1.44042..)log2 n 红黑树:高度 ≤ 2*lo

AVL树,红黑树,B-B+树,Trie树原理和应用

前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作(如插入删除等等) 目录 AVL树 AVL树原理与应用 红黑树 红黑树原理与应用 B/B+树 B/B+树原理与应用 Trie树 Trie树原理与应用 AVL树 简介: AVL树是最早的自平衡二叉树,在早期应用还相对来说比较广,后期由于旋转次数过多而被红黑树等结构取代(二者都是用来搜索的),AVL树内

《 常见算法与数据结构》平衡查找树(2)——红黑树(附动画)

本系列文章主要介绍常用的算法和数据结构的知识,记录的是<Algorithms I/II>课程的内容,采用的是"算法(第4版)"这本红宝书作为学习教材的,语言是java.这本书的名气我不用多说吧?豆瓣评分9.4,我自己也认为是极好的学习算法的书籍. 通过这系列文章,可以加深对数据结构和基本算法的理解(个人认为比学校讲的清晰多了),并加深对java的理解. 红黑树介绍 红黑树是一种简单的实现2-3树的数据结构,它方便的把我们之前实现的二叉搜索树改造成了一棵2-3树.它的核心思想

伸展树&amp;红黑树&amp;AVL树总结

最近学习了这3种树,感觉其实有很多相同的地方吧,首先是最重要的旋转操作,3种树都有 AvlTree left_left(AvlTree k1) { //if(height(k1->left)-height(k1->right)<2)return k1; AvlTree k2 = k1->left; k1->left = k2->right; k2->right = k1; k1->Height = max(height(k1->left),height

数据结构(三):非线性逻辑结构-特殊的二叉树结构:堆、哈夫曼树、二叉搜索树、平衡二叉搜索树、红黑树、线索二叉树

在上一篇数据结构的博文<数据结构(三):非线性逻辑结构-二叉树>中已经对二叉树的概念.遍历等基本的概念和操作进行了介绍.本篇博文主要介绍几个特殊的二叉树,堆.哈夫曼树.二叉搜索树.平衡二叉搜索树.红黑树.线索二叉树,它们在解决实际问题中有着非常重要的应用.本文主要从概念和一些基本操作上进行分类和总结. 一.概念总揽 (1) 堆 堆(heap order)是一种特殊的表,如果将它看做是一颗完全二叉树的层次序列,那么它具有如下的性质:每个节点的值都不大于其孩子的值,或每个节点的值都不小于其孩子的值

Linux内核之于红黑树and AVL树

为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的实用主义特质导致的结果,本短文依然是形而上的观点.红黑树可以直接由2-3树导出,我们可以不再提红黑树,而只提2-3树,因为 2-3树的操作太简单.另外,任何红黑树的操作和特性都可以映射到2-3树中.因此红黑树和AVL树的比较就成了2-3树和AVL树的比较. 它们俩的区别在哪?2-3树的平衡是完美平衡的,但是树杈数量却可以是3个,而AVL树差一点点就完美平衡的标准二叉树,它只允许子树的高度差最多为1. 可见这么看