poj 3311 Hie with the Pie(状态压缩dp)

Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input

3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0

Sample Output

8

Source

East Central North America 2006

inf开太大竟然WA了!!!

【题目大意】类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。求最短距离。

【解析】可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过

【状态表示】dp[state][i]表示到达i点状态为state的最短距离

【状态转移方程】dp[state][i] =min{dp[state][i],dp[state‘][j]+dis[j][i]} dis[j][i]为j到i的最短距离

【DP边界条件】dp[state][i] =dis[0][i]  state是只经过i的状态

 1 #pragma comment(linker, "/STACK:1024000000,1024000000")
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<cmath>
 6 #include<math.h>
 7 #include<algorithm>
 8 #include<queue>
 9 #include<set>
10 #include<bitset>
11 #include<map>
12 #include<vector>
13 #include<stdlib.h>
14 using namespace std;
15 #define max(a,b) (a) > (b) ? (a) : (b)
16 #define min(a,b) (a) < (b) ? (a) : (b)
17 #define ll long long
18 #define eps 1e-10
19 #define MOD 1000000007
20 #define N 16
21 #define M 1<<N
22 #define inf 1<<26
23 int n;
24 int mp[N][N];
25 void flyod(){
26     for(int k=0;k<=n;k++){
27         for(int i=0;i<=n;i++){
28             for(int j=0;j<=n;j++){
29                 if(mp[i][j]>mp[i][k]+mp[k][j]){
30                     mp[i][j]=mp[i][k]+mp[k][j];
31                 }
32             }
33         }
34     }
35 }
36 int dp[M][N];
37 int main()
38 {
39      while(scanf("%d",&n)==1){
40          if(n==0)
41             break;
42
43            for(int i=0;i<=n;i++){
44                for(int j=0;j<=n;j++){
45                    scanf("%d",&mp[i][j]);
46                }
47             }
48             flyod();
49
50             //int m=1<<n;
51             //memset(dp,inf,sizeof(dp));
52             for(int S=0;S<(1<<n);S++){//i表示状态
53                 for(int i=1;i<=n;i++){
54                     if(S&(1<<(i-1))){
55                         if(S==(1<<(i-1))){
56                             dp[S][i]=mp[0][i];
57                         }
58                         else{
59                             dp[S][i]=(int)inf;
60                             for(int j=1;j<=n;j++){
61                                 if(S&(1<<(j-1)) && j!=i){
62                                     dp[S][i]=min(dp[S][i],dp[S^(1<<(i-1))][j]+mp[j][i]);
63                                 }
64                             }
65                         }
66                     }
67                 }
68              }
69              int ans=dp[(1<<n)-1][1]+mp[1][0];
70              for(int i=2;i<=n;i++){
71                  ans=min(ans,dp[(1<<n)-1][i]+mp[i][0]);
72              }
73              printf("%d\n",ans);
74      }
75     return 0;
76 }

无耻地贴上大神的代码

 1 #include<iostream>
 2 #define INF 100000000
 3 using namespace std;
 4 int dis[12][12];
 5 int dp[1<<11][12];
 6 int n,ans,_min;
 7 int main()
 8 {
 9    //freopen("in.txt","r",stdin);
10    while(scanf("%d",&n) && n)
11    {
12        for(int i = 0;i <= n;++i)
13            for(int j = 0;j <= n;++j)
14                scanf("%d",&dis[i][j]);
15        for(int k = 0;k <= n;++k)
16            for(int i = 0;i <= n;++i)
17                 for(int j = 0;j <=n;++j)
18                     if(dis[i][k] + dis[k][j]< dis[i][j])
19                         dis[i][j] = dis[i][k] +dis[k][j];
20
21        for(int S = 0;S <= (1<<n)-1;++S)//枚举所有状态,用位运算表示
22            for(int i = 1;i <= n;++i)
23            {
24                 if(S & (1<<(i-1)))//状态S中已经过城市i
25                 {
26                     if(S ==(1<<(i-1)))   dp[S][i] =dis[0][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界
27                     else//如果S有经过多个城市
28                     {
29                         dp[S][i] = INF;
30                         for(int j = 1;j <=n;++j)
31                         {
32                             if(S &(1<<(j-1)) && j != i)//枚举不是城市I的其他城市
33                                 dp[S][i] =min(dp[S^(1<<(i-1))][j] + dis[j][i],dp[S][i]);
34                             //在没经过城市I的状态中,寻找合适的中间点J使得距离更短
35                         }
36                     }
37                 }
38             }
39        ans = dp[(1<<n)-1][1] + dis[1][0];
40        for(int i = 2;i <= n;++i)
41            if(dp[(1<<n)-1][i] + dis[i][0] < ans)
42                 ans = dp[(1<<n)-1][i] +dis[i][0];
43        printf("%d\n",ans);
44    }
45    return 0;
46 }

时间: 2024-10-23 00:25:36

poj 3311 Hie with the Pie(状态压缩dp)的相关文章

poj 3311 Hie with the Pie (状态压缩+最短路)

Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4491   Accepted: 2376 Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can affo

POJ - 3311 Hie with the Pie (状态压缩)

题目大意:有一间披萨店,要送n个披萨去不同的地方 现在给出每个位置之间的距离,每个位置都可以重复经过,问送完所有披萨再回到店里需要走的最短距离是多少 解题思路:这题的话,有两个状态,一个是现所在地点,另一个是已经经过的地点,所以dp数组是二维的 设dp[i][j]为现所在地为i,经过的城市的状态为j的最短路线 那么dp[i][state | (1 << i)] = min(dp[i][state | (1 << i)], dp[j][state] + g[j][i]) ...这题我

POJ 3311 Hie with the Pie (状压DP)

状态压缩DP dp[i][j]表示在i状态(用二进制表示城市有没有经过)时最后到达j城市的最小时间 转移方程dp[i][j]=min(dp[i][k]+d[k][j],dp[i][j]) d[k][j]是k城市到j城市的最短距离 要先用flody处理 #include<bits.stdc++.h> using namespace std; int d[20][20],dp[1<<11][20]; int n,m; void flody() { for(int k=0;k<=n

poj 3311 Hie with the Pie 【旅行商+回原点】

题目:poj 3311 Hie with the Pie 题意:就是批萨点小二要送批萨,然后给你每个点的距离,有向的,然后让你就走一次回到原点的最短路. 分析:因为给出的是稠密图,所以要处理一下最短路,floyd 然后TSP就好. 枚举每个状态,对于当前状态的每一个已经走过的点,枚举是从那个点走过来的,更新最短路 状态:dp[st][i] :st状态下走到点 i 的最短路 转移方程:dp[st][i]=min(dp[st&~(1<<i)][j]+mp[j][i],dp[st][i]);

POJ 3311 Hie with the Pie TSP+Floyd

保证每个点访问过一次就行,然后会到原点. 这种情况可以先做一边floyd,然后跑tsp就好. #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <set> #include <vector> #include <string> #include <queue> #include <deque&g

poj 2411 Mondriaan&#39;s Dream(状态压缩+dp)

 题意:用1*2砖块铺满n*m的房间. 思路转自:http://www.cnblogs.com/scau20110726/archive/2013/03/14/2960448.html 因为这道题输入范围在11*11之间,所以可以先打表直接输出.......... 状态压缩DP 经典覆盖问题,输入n和m表示一个n*m的矩形,用1*2的方块进行覆盖,不能重叠,不能越出矩形边界,问完全覆盖完整个矩形有多少种不同的方案 其中n和m均为奇数的话,矩形面积就是奇数,可知是不可能完全覆盖的.接着我们来看

POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

贴一个TSP讲解:点击打开链接 错误的转移方程 dp[i][j] 把i当作了步数,以为至多走N步就可以了.作死啊 #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #define maxn 1100 #define inf 0x3f3f3f3f const double eps=1e-8; using namespace std; int dp[12][1<

POJ 3311 Hie with the Pie(状压DP + Floyd)

题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait fo

POJ 3311 Hie with the Pie (Floyd + 状压dp 简单TSP问题)

Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5019   Accepted: 2673 Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can affo