AAAI 2020 论文

Detection && classification:

TANet: Robust 3D Object Detection from Point Clouds with Triple Attention

RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation

ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection

FASTER Recurrent Networks for Efficient Video Classification

PedHunter: Occlusion Robust Pedestrian Detector in Crowded Scenes

Relational Learning for Joint Head and Human Detection

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

Web-Supervised Network with Softly Update-Drop Training for Fine-Grained Visual Classification

Channel Interaction Networks for Fine-Grained Image Categorization

Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN

Deep Embedded Complementary and Interactive Information for Multi-view Classification

Graph Attention Based Proposal 3D ConvNets for Action Detection

Object Instance Mining for Weakly Supervised Object Detection

Temporal Context Enhanced Feature Aggregation for Video Object Detection

CBNet:A Novel Composite Backbone Network Architecture for Object Detection

Segmentation:

GFF: Gated Fully Fusion for Semantic Segmentation

Geometry Sharing Network for 3D Point Cloud Classification and Segmentation

CIAN: Cross-Image Affinity Net for Weakly Supervised Semantic Segmentation

An Adversarial Perturbation Oriented Domain Adaptation Approach for Semantic Segmentation

An Annotation Sparsification Strategy for 3D Medical Image Segmentation via Representative Selection and Self-Training

Deep Object Co-segmentation via Spatial-Semantic Network Modulation

Dynamic Sampling Network for Semantic Segmentation

Face:

Mis-classified Vector Guided Softmax Loss for Face Recognition

Learning Meta Model for Zero- and Few-shot Face Anti-spoofing

Regularized Fine-grained Meta Face Anti-spoofing

FAN-Face: a simple orthogonal improvement to deep face recognition

Tracking:

Pose-Assisted Multi-Camera Collaboration for Active Object Tracking

Complementary-View Multiple Human Tracking

POST: POlicy-based Switch Tracking

SPSTracker: Sub-Peak Suppression of Response Map for Robust Object Tracking

Release the power of online-training for robust visual tracking

Multi-Task Driven Feature Models for Thermal Infrared Tracking

Net 加速

Pruning from Scratch

Channel Pruning Guided by Classification Loss and Feature Importance

Layerwise Sparse Coding for Pruned Deep Neural Networks with Extreme Compression Ratio

Reborn Filters: Pruning Convolutional Neural Networks with Limited Data

Sparsity-inducing Binarized Neural Networks

Binarized Neural Architecture Search

Pose Estimation

FDN: Feature Decoupling Network for Head Pose Estimation

3D Single-Person Concurrent Activity Detection Using Stacked Relation Network

RE-ID:

Infrared-Visible Cross-Modal Person Re-Identification with an X Modality

Multi-spectral Vehicle Re-identification: A Challenge

Single Camera Training for Person Re-identification

Hierarchical Online Instance Matching for Person Search

Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification

Autonomous Driving:

AutoRemover: Automatic Object Removal for Autonomous Driving Videos

other:

Residual Neural Processes

URNet : User-Resizable Residual Networks with Conditional Gating Module

Dynamical System Inspired Adaptive Time Stepping Controller for Residual Network Families

Stochastic Loss Function

Context-Aware Zero-Shot Recognition

Subspace Capsule Network

Capsule Routing via Variational Bayes

Facial Attribute Capsules for Noise Face Super Resolution

Scale-wise Convolution for Image Restoration

Random Erasing Data Augmentation

Random Erasing Data Augmentation

GBCNs: Genetic Binary Convolutional Networks for Enhancing the Performance of 1-bit DCNNs

Particle Filter Recurrent Neural Networks

Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification

Parsing as Pretraining

原文地址:https://www.cnblogs.com/ahuzcl/p/12302783.html

时间: 2024-10-09 03:04:37

AAAI 2020 论文的相关文章

AAAI 2020论文分享:通过识别和翻译交互打造更优的语音翻译模型

2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding>进行解读. 一.研究背景 语音翻译技术是指利用计算机实现从一种语言的语音到另外一种语言的语音或文本的自动翻译过程.该技术可以广泛应用于会议演讲.商业会谈.跨境客服.出国旅游等各个领域和场景,具有重要的研究

2020年AI、CV、NLP顶会最全时间表

2020年AI.CV.NLP顶会最全时间表 2019-09-01 14:04:19 weixin_38753768 阅读数 40 2020 AI.CV.NLP主流会议时间表,包含会议举办的时间.地点.投稿截止日期.官方网址/社交媒体地址,还有H指数(谷歌学术的期刊会议评判标准,即过去5年内有至多h篇论文被引用了至少h次). 2月 AAAI 2020 会议名称: Association for the Advancement of Artificial Intelligence 会议地点: New

京东商城背后的AI技术能力揭秘 - 基于关键词自动生成摘要

作者:京东AI研究院 导言 过去几十年间,人类的计算能力获得了巨大提升:随着数据不断积累,算法日益先进,我们已经步入了人工智能时代.确实,人工智能概念很难理解,技术更是了不起,背后的数据和算法非常庞大复杂.很多人都在疑惑,现在或未来AI将会有哪些实际应用呢? 其实,关于AI的实际应用以及所带来的商业价值并没有那么的"玄幻",很多时候就已经在我们的身边.接下来,[AI论文解读]专栏将会通过相关AI论文的解读,由深入浅地为大家揭秘,AI技术是如何对电商领域进行赋能,以及相关的落地与实践.人

【转帖】MIT人工智能实验室:如何做研究?

来自MIT人工智能实验室:如何做研究? 作者:人工智能实验室全体研究生 编辑:David Chapman 版本:1.3 时间:1988年9月 译者:柳泉波 北京师范大学信息学院2000级博士生 Copyright 1987, 1988 作者版权所有 摘要 本文的主旨是解释如何做研究.我们提供的这些建议,对做研究本身(阅读.写作和程序设计),理解研究过程以及开始热爱研究(方法论.选题.选导师和情感因素),都是极具价值的. 备注:人工智能实验室的Working Papers用于内部交流,包含的信息由

如何做研究?(From: MIT AI LAB)

简评: 这是一篇关于如何做研究的经验总结,全面阐述了研究过程中可能遇到的诸多问题,并给出了切实可行的建议!对于刚进入研究生阶段的研究生来说,我觉得可以为他们未来的研究生活提供很多有益的指导! 摘要: 本文的主旨是解释如何做研究.我们提供的这些建议,对做研究本身(阅读.写作和程序设计),理解研究过程以及开始热爱研究(方法论.选题.选导师和情感因素),都是极 具价值的. 本文背景: 麻省理工学院 人工智能实验室 AI Working Paper 316 1988年10月来自MIT人工智能实验室:如何

预见未来: 微软亚洲研究院看下一个二十年

(上图为微软全球资深副总裁.微软亚太研发集团主席.微软亚洲研究院院长洪小文) 2018年11月8日,微软亚洲研究院迎来了二十周年庆典.1998年11月,微软亚洲研究院正式在北京成立,是微软设在美国本土以外规模最大的研究机构.20年来,微软亚洲研究院已发展成为具有世界影响力的计算机基础及应用研究机构.目前,微软亚洲研究院拥有200多名研究人员,以及超过300名访问学者和实习生,主要聚焦于自然用户界面.智能多媒体.大数据与知识挖掘.人工智能.云和边缘计算.计算机科学基础等六大研究领域. 截至2018

AAAI 2016 paper阅读

本篇文章调研一些感兴趣的AAAI 2016 papers.科研要多读paper!!! Learning to Generate Posters of Scientific Papers,Yuting Qiang, Yanwei Fu, Yanwen Guo, Zhi-Hua Zhou and Leonid Sigal. http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai16poster.pdf 这篇paper研究从科技论文中生成海报

AAAI,ICML,IJCAI,AI,TPAMI,JMLR,DKE,TNNLS,SIGIR,TKDE,KDD

AAAI:  AAAI Conference on Artificial Intelligence ICML: International Conference of Machine Leanring IJCAI: International Joint Conference on Artificial Intelligence AI: Artificial Intelligence TPAMI:IEEE Trans on Pattern Analysis and Machine Intelli

矿业大学论文模板

main.tex 1 \documentclass[preprint,authoryear,PhD]{cumtthesis} 2 \usepackage{fancyvrb}%----------------------------------------------------------用于代码排版 3 \DefineVerbatimEnvironment{shell}{Verbatim}% 4 {frame=single,framerule=0.3mm,rulecolor=\color{re