菜鸡学算法--70. 爬楼梯

先来看题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

作为一个菜鸡,看到题目直接懵逼,思路混乱。

解题大招:

首先,计算可执行的逻辑最后只可能是if else分支,或者是 for while循环 或者是递归。所以,解题的细节最终都会落到这上面,更多的还是循环或者递归,而循环或者递归就以为着有重复的逻辑存在,从这个想法切入。

在懵逼的时候,首先向到是否可以暴力,显然这一题目不可以;然后就是看基本的情况如何解:

当n=1时,只有1中走法

当n=2时,有两种走法

那当n=3时呢,一共3阶台阶,想走到第3阶台阶,要么从第2阶走一步上来,要么从1阶走2步上来,即:

f(3)=f(1)+f(2)

那么想走到第n阶台阶,要么从第n-1阶走一步上来,要么从n-2阶走2步上来,即n-1阶走的方法数加上n-2阶走的方法数:

f(n)=f(n-1)+f(n-2)

这个公式就非常熟悉了,斐波拉契数列公式那么题解就来了:

 1 private static int ClimbStair(int n)
 2         {
 3             if (n <=2)
 4             {
 5                 return n;
 6             }
 7             int res = 0, dp1 = 1, dp2 = 2;
 8             for (int i = 3; i <= n; i++)
 9             {
10                 res = dp1 + dp2;
11                 dp1 = dp2;
12                 dp2 = res;
13             }
14             return res;
15         }

这一题是一个简单的动态规划问题,对动态规划的思想还不是很懂,这里呢也是做个记录,贴个动态规划思路分析:

本问题其实常规解法可以分成多个子问题,爬第n阶楼梯的方法数量,等于 2 部分之和

爬上 n-1n−1 阶楼梯的方法数量。因为再爬1阶就能到第n阶
爬上 n-2n−2 阶楼梯的方法数量,因为再爬2阶就能到第n阶
所以我们得到公式 dp[n] = dp[n-1] + dp[n-2]dp[n]=dp[n−1]+dp[n−2]
同时需要初始化 dp[0]=1dp[0]=1 和 dp[1]=1dp[1]=1
时间复杂度:O(n)O(n)

题目来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路记录:

作者:guanpengchn
链接:https://leetcode-cn.com/problems/climbing-stairs/solution/hua-jie-suan-fa-70-pa-lou-ti-by-guanpengchn/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

原文地址:https://www.cnblogs.com/c-supreme/p/12571155.html

时间: 2024-11-05 18:43:08

菜鸡学算法--70. 爬楼梯的相关文章

1180: 零起点学算法87——超级楼梯(有疑问)

1180: 零起点学算法87--超级楼梯 Time Limit: 1 Sec  Memory Limit: 128 MB   64bit IO Format: %lldSubmitted: 1803  Accepted: 431[Submit][Status][Web Board] Description 有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法? Input 输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1

[leetcode] 70. 爬楼梯

70. 爬楼梯 最简单的动态规划 假设f[i]表示爬到第i层有几种爬法 那么状态转移方程为:f[i] = f[i-1] + f[i-2] 初始条件显然是:f[1]=1,f[2] = 2; class Solution { public int climbStairs(int n) { if (n == 1) return 1; int f[] = new int[n]; f[0] = 1; f[1] = 2; for (int i = 2; i < n; i++) { f[i] = f[i -

C++算法之爬楼梯问题的代码

如下代码是关于C++算法之爬楼梯问题的代码. { if(layer <= 0) return; return; } (2)判断当前的层数是为1或者是否为2 { if(layer <= 0) return; if(layer == 1){ printf_layer_one(layer, stack, top); return; } if(layer == 2){ printf_layer_two(layer, stack, top); return; } return; } (3)对于2中提及的

面试算法题:爬楼梯,N级楼梯有多少种走法?

By Long Luo 个人博客链接 最近去面试时,在一家小公司面试时,公司小BOSS给我出了一道算法题: 一个人爬楼梯,一步可以迈一级,二级,三级台阶,如果楼梯有N级,要求编写程序,求总共有多少种走法. 这个问题应该是一个很老的题目了,用中学数学来说,就是一个排列组合问题.当时拿到这个题目之后,首先想到使用递归的思想去解决这个问题: N级楼梯问题可以划分为:N-1级楼梯,N-2级楼梯,N-3级楼梯的走法之和. 先计算下0,1,2,3及楼梯有多少种走法: 1 --> 1 2 --> 11 2

#动态规划 LeetCode 70 爬楼梯

假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶. 1 阶 + 1 阶 2 阶 示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶. 1 阶 + 1 阶 + 1 阶 1 阶 + 2 阶 2 阶 + 1 阶 思路:关于动态规划的问题,一般选择先使用递归的思路切入问题.以本题为例: 递归的思路,我们要确定当前递归函数

leetcode 70. 爬楼梯(Climbing Stairs)

目录 题目描述: 示例 1: 示例 2: 解法: 题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶. 1. 1 阶 + 1 阶 2. 2 阶 示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶. 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶 解法: clas

LeetCode 70 - 爬楼梯 - [递推+滚动优化]

假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方法可以爬到楼顶.1. 1 阶 + 1 阶2. 2 阶 示例 2: 输入: 3输出: 3解释: 有三种方法可以爬到楼顶.1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶 设 $f[n]$ 表示跳上 $n$ 级台阶的方案数目,因此很容易得到 $f[n] = f[n-1

70. 爬楼梯

假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶. 1. 1 阶 + 1 阶 2. 2 阶 示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶. 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶 class Solution { public int climbStairs

LeetCode 题解 | 70. 爬楼梯

假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶. 1. 1 阶 + 1 阶 2. 2 阶 示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶. 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶 Code class Solution { public: int climb