PCA方法由于其在降维和特征提取方面的有效性,在人脸识别领域得到了广泛的应用。
其基本原理是:利用K-L变换抽取人脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到一组投影系数,通过与各个人脸图像比较进行识别。
进行人脸识别的过程,主要由训练阶段和识别阶段组成:
训练阶段
第一步:写出训练样本矩阵,其中向量xi为由第i个图像的每一列向量堆叠成一列的MN维列向量,即把矩阵向量化。假设训练集有200个样本,,由灰度图组成,每个样本大小为M*N。
第二步:计算平均脸
Ψ=1200∑i=1i=200xi
第三步:计算差值脸,计算每一张人脸与平均脸的差值
di=xi?Ψ,i=1,2,...,200
第四步:构建协方差矩阵
C=1200∑i=1200didiT=1200AAT
第五步:求协方差矩阵的特征值和特征向量,构造特征脸空间
求出 ATA 的特征值 λi及其正交归一化特征向量νi,根据特征值的贡献率选取前p个最大特征值及其对应的特征向量,贡献率是指选取的特征值的和与占所有特征值的和比,即:
?=∑i=1i=pλi∑i=1i=200λi≥a
若选取前p个最大的特征值,则“特征脸”空间为:
w=(u1,u2,...up)
第六步:将每一幅人脸与平均脸的差值脸矢量投影到“特征脸”空间,即
Ωi=wTdi(i=1,2,...,200)
识别阶段
第一步:将待识别的人脸图像Γ与平均脸的差值脸投影到特征脸空间,得到其特征向量表示:
ΩΓ=wT(Γ?Ψ)
第二布:采用欧式距离来计算ΩΓ与每个人脸的距离εi
εi2=∥∥Ωi?ΩΓ∥∥2(i=1,2,...,200)
求最小值对应的训练集合中的标签号作为识别结果
需要说明的是协方差矩阵AAT的维数为MN*MN,其维数是比较较大的,而我们在这里的训练样本个数为200,ATA的维数为200*200小了许多,实际情况中,采用奇异值分解(SingularValue Decomposition ,SVD)定理,通过求解ATA的特征值和特征向量来组成特征脸空间的。必须明白的是特征脸空间是由ATA的子空间构成,我们的识别任务也是将原始ATA所构成的空间投影到我们选取前p个最大的特征值对应的特征向量组成的子空间里,进行比较,选取最近的训练样本为标号。
代码
训练过程代码如下:
function [m, A, Eigenfaces] = EigenfaceCore(T)
% Use Principle Component Analysis (PCA) to determine the most
% discriminating features between images of faces.
%
% Description: This function gets a 2D matrix, containing all training image vectors
% and returns 3 outputs which are extracted from training database.
%
% Argument: T - A 2D matrix, containing all 1D image vectors.
% Suppose all P images in the training database
% have the same size of MxN. So the length of 1D
% column vectors is M*N and ‘T‘ will be a MNxP 2D matrix.
%
% Returns: m - (M*Nx1) Mean of the training database
% Eigenfaces - (M*Nx(P-1)) Eigen vectors of the covariance matrix of the training database
% A - (M*NxP) Matrix of centered image vectors
%
% See also: EIG
% Original version by Amir Hossein Omidvarnia, October 2007
% Email: aomidvar@ece.ut.ac.ir
%%%%%%%%%%%%%%%%%%%%%%%% Calculating the mean image
m = mean(T,2); % Computing the average face image m = (1/P)*sum(Tj‘s) (j = 1 : P)
Train_Number = size(T,2);
%%%%%%%%%%%%%%%%%%%%%%%% Calculating the deviation of each image from mean image
A = [];
for i = 1 : Train_Number
temp = double(T(:,i)) - m; % Computing the difference image for each image in the training set Ai = Ti - m
A = [A temp]; % Merging all centered images
end
%%%%%%%%%%%%%%%%%%%%%%%% Snapshot method of Eigenface methos
% We know from linear algebra theory that for a PxQ matrix, the maximum
% number of non-zero eigenvalues that the matrix can have is min(P-1,Q-1).
% Since the number of training images (P) is usually less than the number
% of pixels (M*N), the most non-zero eigenvalues that can be found are equal
% to P-1. So we can calculate eigenvalues of A‘*A (a PxP matrix) instead of
% A*A‘ (a M*NxM*N matrix). It is clear that the dimensions of A*A‘ is much
% larger that A‘*A. So the dimensionality will decrease.
L = A‘*A; % L is the surrogate of covariance matrix C=A*A‘.
[V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A‘*A and C=A*A‘.
%%%%%%%%%%%%%%%%%%%%%%%% Sorting and eliminating eigenvalues
% All eigenvalues of matrix L are sorted and those who are less than a
% specified threshold, are eliminated. So the number of non-zero
% eigenvectors may be less than (P-1).
L_eig_vec = [];
for i = 1 : size(V,2)
if( D(i,i)>4e+07)
L_eig_vec = [L_eig_vec V(:,i)];
end
end
%%%%%%%%%%%%%%%%%%%%%%%% Calculating the eigenvectors of covariance matrix ‘C‘
% Eigenvectors of covariance matrix C (or so-called "Eigenfaces")
% can be recovered from L‘s eiegnvectors.
Eigenfaces = A * L_eig_vec; % A: centered image vectors
识别过程代码如下:
function OutputName = Recognition(TestImage, m, A, Eigenfaces)
% Recognizing step....
%
% Description: This function compares two faces by projecting the images into facespace and
% measuring the Euclidean distance between them.
%
% Argument: TestImage - Path of the input test image
%
% m - (M*Nx1) Mean of the training
% database, which is output of ‘EigenfaceCore‘ function.
%
% Eigenfaces - (M*Nx(P-1)) Eigen vectors of the
% covariance matrix of the training
% database, which is output of ‘EigenfaceCore‘ function.
%
% A - (M*NxP) Matrix of centered image
% vectors, which is output of ‘EigenfaceCore‘ function.
%
% Returns: OutputName - Name of the recognized image in the training database.
%
% See also: RESHAPE, STRCAT
% Original version by Amir Hossein Omidvarnia, October 2007
% Email: aomidvar@ece.ut.ac.ir
%%%%%%%%%%%%%%%%%%%%%%%% Projecting centered image vectors into facespace
% All centered images are projected into facespace by multiplying in
% Eigenface basis‘s. Projected vector of each face will be its corresponding
% feature vector.
ProjectedImages = [];
Train_Number = size(Eigenfaces,2);
for i = 1 : Train_Number
temp = Eigenfaces‘*A(:,i); % Projection of centered images into facespace
ProjectedImages = [ProjectedImages temp];
end
%%%%%%%%%%%%%%%%%%%%%%%% Extracting the PCA features from test image
InputImage = imread(TestImage);
temp = InputImage(:,:,1);
[irow icol] = size(temp);
InImage = reshape(temp‘,irow*icol,1);
Difference = double(InImage)-m; % Centered test image
ProjectedTestImage = Eigenfaces‘*Difference; % Test image feature vector
%%%%%%%%%%%%%%%%%%%%%%%% Calculating Euclidean distances
% Euclidean distances between the projected test image and the projection
% of all centered training images are calculated. Test image is
% supposed to have minimum distance with its corresponding image in the
% training database.
Euc_dist = [];
for i = 1 : Train_Number
q = ProjectedImages(:,i);
temp = ( norm( ProjectedTestImage - q ) )^2;
Euc_dist = [Euc_dist temp];
end
[Euc_dist_min , Recognized_index] = min(Euc_dist);
OutputName = strcat(int2str(Recognized_index),‘.jpg‘);
其中训练样本的最后一行代码:
Eigenfaces = A * L_eig_vec; % A: centered image vectors
和识别过程的
temp = Eigenfaces‘*A(:,i); % Projection of centered images into facespace
写成公式也就是如下
T=(AV)TA=VT(ATA)
这里VT是新坐标系下的基,投影的结果也就是新坐标系下的系数。基于PCA的人脸识别也就是我们在新的坐标系下比较两个向量的距离。稍后上传完整代码。
Licenses
作者 | 日期 | 联系方式 |
---|---|---|
风吹夏天 | 2015年8月10日 | [email protected] |
版权声明:本文为博主原创文章,未经博主允许不得转载。