UVALIVE 4287 Proving Equivalences (强连通分量+缩点)

题意:给定一个图,问至少加入多少条边能够使这个图强连通。

思路:首先求出这个图的强连通分量。然后把每个强连通分量缩成一个点。那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的入度和出度至少为1。那么我们求出入度为零的节点数量和出度为零的节点数量。答案取最大值,由于在一个DAG中加入这么多边一定能够使这个图强连通。注意当这个图本身强连通时要特判一下,答案为零。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii (pair<int, int>)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

const int maxn = 30000;
//const int INF = 0x3f3f3f3f;
int n, m;

//强连通分量
vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S;
void dfs(int u) {
	pre[u] = lowlink[u] = ++dfs_clock;
	S.push(u);
	for(int i = 0; i < G[u].size(); i++) {
		int v = G[u][i];
		if(!pre[v]) {
			dfs(v);
			lowlink[u] = min(lowlink[u], lowlink[v]);
		} else if(!sccno[v]) {
			lowlink[u] = min(lowlink[u], pre[v]);
		}
	}
	if(lowlink[u] == pre[u]) {
		scc_cnt++;
		for(;;) {
			int x = S.top(); S.pop();
			sccno[x] = scc_cnt;
			if(x == u) break;
		}
	}
}
void find_scc(int n) {
	dfs_clock = scc_cnt = 0;
	memset(sccno, 0, sizeof(sccno));
	memset(pre, 0, sizeof(pre));
	for(int i = 1; i <= n; i++)
		if(!pre[i]) dfs(i);
}
int in[maxn], out[maxn];
int main() {
    //freopen("input.txt", "r", stdin);
    int T; cin >> T;
	while(T--) {
		cin >> n >> m;
		for(int i = 1; i <= n; i++) G[i].clear();
		for(int i = 0; i < m; i++) {
			int u, v; scanf("%d%d", &u, &v);
			G[u].push_back(v);
		}
		find_scc(n);
		memset(in, 0, sizeof(in));
		memset(out, 0, sizeof(out));
		for(int i = 1; i <= n; i++) {
			for(int j = 0; j < G[i].size(); j++) {
				if(sccno[i] != sccno[G[i][j]]) out[sccno[i]]++, in[sccno[G[i][j]]]++;
			}
		}
		int sin = 0, sout = 0;
		for(int i = 1; i <= scc_cnt; i++) {
			if(!in[i]) sin++;
			if(!out[i]) sout++;
		}
		int ans = scc_cnt==1 ?

0 : max(sin, sout);
		cout << ans << endl;
    }
    return 0;
}
时间: 2024-11-02 23:33:21

UVALIVE 4287 Proving Equivalences (强连通分量+缩点)的相关文章

UVALive - 4287 Proving Equivalences(强连通分量 + DAG)

题目大意:给出N个命题,要求你证明这N个命题的等价性 比如有4个命题a,b,c,d,我们证明a<->b, b<->c,c<->d,每次证明都是双向的,因此一共用了6次推导 如果换成证明a->b,b->c,c->d,d->a,每次证明都是单向的,而只需4次就可以证明所有命题的等价性 现在给出M个命题证明,问还需要证明几个,才可以保证N个命题等价 解题思路:命题的等价,就相当于证明点到点之间是互相连通. 所以,将所给的命题证明当成一条有向边,构建出一

UvaLive 4287 Proving Equivalences 强连通缩点

原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2288 题意: 给你一个有向图,问你至少需要添加多少条边,使得整个图强连通. 题解: 就..直接缩点,令缩点后入度为0的点有a个,出度为0的点有b个,答案就是max(a,b) 代码: #include<iostream> #include<cstri

UVALive Proving Equivalences (强连通分量,常规)

题意:给一个有向图,问添加几条边可以使其强连通. 思路: 按照大白书p322做.tarjan算法求强连通分量,然后缩点求各个强连通分量的出入度,答案是max(入度为0的缩点个数,出度为0的缩点个数). 1 #include <bits/stdc++.h> 2 #define LL long long 3 #define pii pair<int,int> 4 using namespace std; 5 const int N=20000+5; 6 const int INF=0x

UVALive - 4287 Proving Equivalences (强连通分量)

链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10294 题意 :  告诉你n个等价的命题 和m个关系 比如 (u,v)代表u可以推导出v, 问至少需要补充多少条边. 用强连通缩点成一张DAG. #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <

hdu 2767 Proving Equivalences 强连通缩点

给出n个命题,m个推导,问最少增加多少条推导,可以使所有命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每个点都至少要有一条出去的边和一条进来的边(这样才能保证它能到任意点和任意点都能到它) 所以求出新图中入度为0的个数,和出度为0的个数,添加的边就是从出度为0的指向入度为0的.这样还会有一点剩余,剩余的就乱连就行了. 所以只要求出2者的最大值就OK. #include <iostream> #include<cstring>

LA 4287 等价性证明(强连通分量缩点)

https://vjudge.net/problem/UVALive-4287 题意: 给出n个结点m条边的有向图,要求加尽量少的边,使得新图强连通. 思路:强连通分量缩点,然后统计缩点后的图的每个结点是否还需要出度和入度. 1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio> 5 #include<sstream> 6 #include

hdu2767 Proving Equivalences --- 强连通

给一个图,问至少加入?多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入?最少的边连成环,就是把图上入度为0和出度为0的点连上,那么其它的点就都能够互相到达了 所以答案就是max(入度为0的点,出度为0的点) #include <iostream> #include <cstring> #include <string> #include <cstdio> #include <

hdu2767Proving Equivalences(强连通,缩点)

Problem Description Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matrix. Prove that the following statements are equivalent: 1. A is invertible. 2. Ax = b has exactly one solution for every n × 1 matr

ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)

题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组的就是两个强连通分量在不同的从入度0到出度0的强连通分量的路径上. 那么算法很直观就能想到了,用记忆化搜索,d[u]表示从强连通分量u出发到出度为0的强连通分量最少要几个组(最多有几个点). 1 #include<cstdio> 2 #include<cstring> 3 #inclu