在家补补题
#include <bits/stdc++.h> char str[202]; void move(int &x, int &y, char ch) { if (ch == ‘U‘) x--; if (ch == ‘D‘) x++; if (ch == ‘L‘) y--; if (ch == ‘R‘) y++; } int main(void) { int n; scanf ("%d", &n); scanf ("%s", &str); int ans = 0; for (int i=0; i<n; ++i) { int x = 0, y = 0; for (int j=i; j<n; ++j) { move (x, y, str[j]); if (x == 0 && y == 0) ans++; } } printf ("%d\n", ans); return 0; }
暴力 || 找规律 B - Cards
暴力即DFS也行。。。当时就if else乱写一堆过了
#include <bits/stdc++.h> char str[202]; int col[3]; int main(void) { int n; scanf ("%d", &n); scanf ("%s", &str); col[0] = col[1] = col[2] = 0; for (int i=0; i<n; ++i) { if (str[i] == ‘R‘) col[0]++; if (str[i] == ‘G‘) col[1]++; if (str[i] == ‘B‘) col[2]++; } if (col[0] == n) puts ("R"); else if (col[1] == n) puts ("G"); else if (col[2] == n) puts ("B"); else { if (col[0] && col[1] && col[2]) puts ("BGR"); else { if (n == 2) { if (col[0] == 0) puts ("R"); else if (col[1] == 0) puts ("G"); else if (col[2] == 0) puts ("B"); } else if (col[0] == 1) { if (col[1] == 0) puts ("GR"); if (col[2] == 0) puts ("BR"); } else if (col[1] == 1) { if (col[0] == 0) puts ("GR"); if (col[2] == 0) puts ("BG"); } else if (col[2] == 1) { if (col[0] == 0) puts ("BR"); if (col[1] == 0) puts ("BG"); } else puts ("BGR"); } } return 0; }
直接枚举答案,同时记录能整除2,整除2和3,只能整除3的个数,当遇到满足条件的就是最优。二分也行。。
#include <bits/stdc++.h> const int N = 4e6 + 5; int main(void) { int n, m; scanf ("%d%d", &n, &m); int best = 4000000; int c1 = 0, c2 = 0, c3 = 0; for (int i=2; i<=4000000; ++i) { if (i % 2 == 0) c1++; if (i % 2 == 0 && i % 3 == 0) c2++; if (i % 2 != 0 && i % 3 == 0) c3++; if (c1 >= n && c2 >= m - c3 && c1 - (m - c3) >= n) { best = i; break; } } printf ("%d\n", best); return 0; }
暴力+概率 D - Jerry‘s Protest
题意:已知结果两胜一负,问总和小于后者的概率。
分析:预处理出任意两个数字相减的差的方案数,那么前两次在正数选,后者只要能使得总和小的可以处理前缀和,O (1),总复杂度 O (n ^ 2)。
#include <bits/stdc++.h> const int N = 2e3 + 5; int a[N]; int cnt[10005]; int sum[5005]; int main(void) { int n; scanf ("%d", &n); for (int i=1; i<=n; ++i) scanf ("%d", &a[i]); for (int i=1; i<=n; ++i) { for (int j=1; j<=n; ++j) { if (i == j) continue; cnt[5000+a[i]-a[j]]++; } } for (int i=1; i<=5000; ++i) { sum[i] = sum[i-1] + cnt[i]; } double ans = 0; for (int i=5001; i<=9999; ++i) { if (!cnt[i]) continue; for (int j=5001; j<=9999; ++j) { if (!cnt[j]) continue; int c = 15000 - (i + j) - 1; if (c < 1 || c > 4999 || !sum[c]) continue; ans += 1.0 * cnt[i] * cnt[j] * sum[c]; } } double div = 1.0 * (n * (n - 1) / 2); ans = ans / div / div / div; printf ("%.8f\n", ans); return 0; }
三分 + 贪心 E - Simple Skewness
题意:选取一个子集使得平均数-中位数最大
分析:首先个数是奇数,如果是偶数,去掉中间较大的数,差会变大(?)。然后排序后,枚举中位数的位置,三分长度,因为差的分布是单峰,选的数字使差尽可能大,右边选择最后几个,左边选取靠近中位数的几个。
#include <bits/stdc++.h> typedef long long ll; const int N = 2e5 + 5; struct Pair { ll a; int b; bool operator < (const Pair &rhs) const { return a * rhs.b < rhs.a * b; } }; int a[N]; ll sum[N]; int n, bi, bl; Pair best; Pair get(int id, int len) { ll val = sum[id] - sum[id-len-1]; val += sum[n] - sum[n-len]; Pair cur = Pair {val, 2 * len + 1}; cur.a -= 1ll * a[id] * cur.b; if (best < cur) { best = cur; bi = id; bl = len; } return cur; } int main(void) { scanf ("%d", &n); for (int i=1; i<=n; ++i) { scanf ("%d", a + i); } std::sort (a+1, a+1+n); for (int i=1; i<=n; ++i) { sum[i] = sum[i-1] + a[i]; } bi = 1; bl = 0; best = Pair {0, 1}; for (int i=1; i<=n; ++i) { int low = 0, high = std::min (i - 1, n - i); while (low + 3 < high) { int mid1 = (2 * low + high) / 3; int mid2 = (low + 2 * high) / 3; Pair v1 = get (i, mid1); Pair v2 = get (i, mid2); if (v1 < v2) low = mid1; else high = mid2; } for (int j=low; j<=high; ++j) get (i, j); } std::vector<int> ans; for (int i=bi-bl; i<=bi; ++i) { ans.push_back (a[i]); } for (int i=n-bl+1; i<=n; ++i) { ans.push_back (a[i]); } printf ("%d\n", ans.size ()); for (int i=0; i<ans.size (); ++i) { if (i > 0) putchar (‘ ‘); printf ("%d", ans[i]); } puts (""); return 0; }
题意:n个数字分组,求每组最大值-最小值的和小于k的方案数
分析:明显的DP,复杂度肯定是 O (n ^ 2 * k),难在状态的转移。dp[i][j][k] 考虑前i个数字,open(只知道最小值,最大值未知)了j组,当前累计和为k的方案数。那么open的几组暂时由a[i]"托管",之前是a[i-1]“托管”,那么前后转移累加j * (a[i] - a[i-1]),a[i]有好几种选择,可以close一个组,选择一个组自己为最大值,j - 1;可以多一个组,自己为最小值,j+1;还可以进入某一个组(自己不是最大值)或者自己一个数字成为一个组(不算open)。
#include <bits/stdc++.h> const int N = 2e2 + 5; const int K = 1e3 + 5; const int MOD = 1e9 + 7; int a[N]; int dp[2][N][K]; void add(int &x, int y) { x += y; if (x >= MOD) x %= MOD; } int main(void) { int n, m; scanf ("%d%d", &n, &m); for (int i=1; i<=n; ++i) scanf ("%d", a + i); std::sort (a+1, a+1+n); int now = 0; dp[now][0][0] = 1; for (int i=1; i<=n; ++i) { now ^= 1; memset (dp[now], 0, sizeof (dp[now])); for (int j=0; j<i; ++j) { for (int k=0; k<=m; ++k) { if (!dp[now^1][j][k]) continue; int &x = dp[now^1][j][k]; int s = k + j * (a[i] - a[i-1]); if (s > m) continue; add (dp[now][j][s], 1ll * x * (j + 1) % MOD); add (dp[now][j+1][s], x); if (j) add (dp[now][j-1][s], 1ll * x * j % MOD); } } } int ans = 0; for (int i=0; i<=m; ++i) add (ans, dp[now][0][i]); printf ("%d\n", ans); return 0; }
时间: 2024-10-12 11:33:55