数据结构-图-经典算法(三)

参考资料

http://www.cnblogs.com/hanchan/archive/2009/09/23/1572509.html

http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

http://www.cnblogs.com/RootJie/archive/2012/05/15/2501317.html

四、最短路径

1、从某个源点到其余各个顶点的最短路径

  Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

注意该算法要求图中不存在负权边。

算法描述

1)算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

实例:

如下:

迭代过程如下:


迭代


S


U


dis[2]


dis[3]


dis[4]


dis[5]


初始


{1}


---


10


-1


30


100


1


{1,2}


2


10


60


30


100


2


{1,2,4}


4


10


50


30


90


3


{1,2,4,3}


3


10


50


30


60


4


{1,2,4,3,5}


5


10


50


30


60

2.每一对顶点之间的最短路径

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

时间: 2024-10-18 19:52:37

数据结构-图-经典算法(三)的相关文章

数据结构-图-经典算法

参考资料 http://blog.csdn.net/weinierbian/article/details/8059129 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 百度百科 一.最小生成树算法 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树. 常见的两种算法是:Kruskal算法.Prim算法 Kruskal算法简述 假设 WN=(V,{E}) 是一个含有 n

人脸识别经典算法三:Fisherface(LDA)

Fisherface是由Ronald Fisher发明的,想必这就是Fisherface名字由来.Fisherface所基于的LDA(Linear Discriminant Analysis,线性判别分析)理论和特征脸里用到的PCA有相似之处,都是对原有数据进行整体降维映射到低维空间的方法,LDA和PCA都是从数据整体入手而不同于LBP提取局部纹理特征.如果阅读本文有难度,可以考虑自学斯坦福公开课机器学习或者补充线代等数学知识. 同时作者要感谢cnblogs上的大牛JerryLead,本篇博文基

算法系列笔记10(有关图的算法三—最大流与二分图)

本次主要记录流网络以及最大流的简单概念(以后可能会将最大流的实现算法补充),重点讲解用匈牙利算法来求二分图的最大匹配. 1:流网络 流网络是G(V, E)是一个有限的有向图,它的每条边(u, v)∈E都有一个非负值实数的容量c(u, v)≥0.如果(u, v)不属于E,我们假设c(u, v) = 0.我们区别两个顶点: 一个源点s和一个汇点t..并假定每个顶点均处于从源点到汇点的某条路径上. 形式化的定义:一道网络流是一个对于所有结点u和v都有以下特性的实数函数::满足下面两条性质: 容量限制:

python环境下使用mysql数据及数据结构和二叉树算法(图)

python环境下使用mysql数据及数据结构和二叉树算法(图):1 python环境下使用mysql2使用的是 pymysql库3 开始-->创建connection-->获取cursor-->操作-->关闭cursor->关闭connection->结束45 代码框架6 import pymysql.cursors7 ###连接数据库8 connection = pymysql.connect(host='127.0.0.1',port=3306,user='roo

经典算法题每日演练——第三题 猴子吃桃

原文:经典算法题每日演练--第三题 猴子吃桃 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾就多吃了一个.第二天早上又将剩下的桃子吃了一半,还是不过瘾又多 吃了一个.以后每天都吃前一天剩下的一半再加一个.到第10天刚好剩一个.问猴子第一天摘了多少个桃子? 分析: 这是一套非常经典的算法题,这个题目体现了算法思想中的递推思想,递归有两种形式,顺推和逆推,针对递推,只要 我们找到递推公式,问题就迎刃而解了. 令S10=1,容易看出 S9=2(S10+1), 简化一下 S9=2S10+2 S8=2S

第三章 经典算法

第三章  经典算法 0  写在前面 本章介绍了 SVM,逻辑回归和决策树 三个经典算法.这三个算法在李航的<统计学习方法>中分别拿出了三章重点讲解.本节的提问需要有相应的基础,通过书中的提问发现自己基础太弱了,而基础知识最能考察一个人的学习能力.(记得考研时张宇说过,基础知识不等于简单知识,越是抽象的基础知识越困难,双手赞成!)<百面机器学习>是本很好的书,一遍远远不够,鉴于时间和需求不同,第一遍暂时快速浏览,从宏观把我覆盖的知识点. 1 支持向量机SVM 关于SVM的介绍,网上有

【白话经典算法系列之十七】 数组中只出现一次的数 其他三次

本文地址:http://blog.csdn.net/morewindows/article/details/12684497转载请标明出处,谢谢. 欢迎关注微博:http://weibo.com/MoreWindows 首先看看题目要求: 数组A中,除了某一个数字x之外,其他数字都出现了三次,而x出现了一次.请给出最快的方法找到x. 这个题目非常有意思,在本人博客中有<位操作基础篇之位操作全面总结>这篇文章介绍了使用位操作的异或来解决——数组中其他数字出现二次,而x出现一次,找出x.有<

三白话经典算法系列 Shell排序实现

山是包插入的精髓排序排序.这种方法,也被称为窄增量排序,因为DL.Shell至1959提出命名. 该方法的基本思想是:先将整个待排元素序列切割成若干个子序列(由相隔某个"增量"的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序. 由于直接插入排序在元素基本有序的情况下(接近最好情况),效率是非常高的,因此希尔排序在时间效率上比前两种方法有较大提高. 以n=10的一个数组49, 38, 65, 97

数据结构--图--最小生成树(Prim算法)

构造连通网的最小生成树,就是使生成树的边的权值之和最小化.常用的有Prim和Kruskal算法.先看Prim算法:假设N={V,{E}}是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(uo属于V),TE={}开始,重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到代价最小的一条边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止.此时TE中必有n-1条边,T={V,{TE}}为N的最小生成树.为实现此算法,需另设一个辅助数组closedge,以记录从U