动态规划1-----------poj1080

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<iostream>
 4 #include<algorithm>
 5
 6 using namespace std;
 7 /*dp,poj1080*/
 8
 9 int dp[105][105];//动态规划数据存放
10 int map[105][105];//用来存放原始数据
11
12 void map_init()
13 {
14     map[‘A‘][‘A‘]=map[‘C‘][‘C‘]=map[‘G‘][‘G‘]=map[‘T‘][‘T‘]=5;
15     map[‘A‘][‘C‘]=map[‘C‘][‘A‘]=map[‘A‘][‘T‘]=map[‘T‘][‘A‘]=map[‘T‘][‘ ‘]=map[‘ ‘][‘T‘]=-1;
16     map[‘A‘][‘G‘]=map[‘G‘][‘A‘]=map[‘C‘][‘T‘]=map[‘T‘][‘C‘]=map[‘G‘][‘T‘]=map[‘T‘][‘G‘]=map[‘G‘][‘ ‘]=map[‘ ‘][‘G‘]=-2;
17     map[‘A‘][‘ ‘]=map[‘ ‘][‘A‘]=map[‘G‘][‘C‘]=map[‘C‘][‘G‘]=-3;
18     map[‘C‘][‘ ‘]=map[‘ ‘][‘C‘]=-4;
19 }
20
21 int max_X3(int a,int b,int c)
22 {
23     if(a>b)
24     {
25         if(a>c)
26             return a;
27         else
28             return c;
29     }
30     else
31     {
32         if(b>c)
33             return b;
34         else
35             return c;
36     }
37 }
38
39 int    main()
40 {
41     int y;//全局次数
42     int i,j;//循环变量
43     int a,b;//用户输入
44     char str1[105];
45     char str2[105];
46
47     //初始化
48     map_init();
49
50     cin>>y;
51     while (y--)
52     {
53         scanf("%d %s",&a,str1);
54         scanf("%d %s",&b,str2);
55
56         //初始化第一行第一列
57         dp[0][0]=0;
58         for (i = 0; i < a; i++)
59             dp[0][i+1] = dp[0][i] + map[str1[i]][‘ ‘];
60
61         for (j = 0; j < b; j++)
62             dp[j+1][0] = dp[j][0] + map[str2[j]][‘ ‘];
63
64         for (i = 1; i <= a; i++)
65         {
66             for (j = 1; j <= b; j++)
67             {
68                 dp[j][i] = max_X3(dp[j-1][i-1]+map[str2[j-1]][str1[i-1]],
69                     dp[j-1][i]+map[str2[j-1]][‘ ‘],
70                     dp[j][i-1]+map[str1[i-1]][‘ ‘]);
71             }
72         }
73
74         cout<<dp[b][a]<<endl;
75     }
76     return 0;
77 }

先上代码,然后说明。

首先对于动态规划到现在的理解,只是现阶段的理解。动态规划下面用dp代替。

要点:

1、一个问题可以被分成多个相同的子问题,子问题和原问题差别只有数据规模,总结就是大化小。

2、这个问题的解可以由子问题的解得出,总结就是用已经有的小解得出最后的解。

3、经常用一个二维数组去保存已经求出的解,之后要是用到就可以直接取不用计算,总结就是记录已经解过的方程的解,不做相同的无用功。

4、状态转移方程,其中的状态,初始值,这些都要考虑清楚。

对于模型,等我做过10道题目熟练之后再说吧,现在给出还为时过早。

题目:

首先明确状态,问问自己两个字符串对比有几种状态?下面用AB两个字符表示两个字符串

1、A的这个字母和B相同

2、A的这个字母和B不同,A和-对应

3、A的这个字母和B不同,B和-对应

最后出来的两个字符串一定是满足这个规则的。只有这三种状态。

那么状态转移方程呢?

1、明确目的,我们要求的是匹配的最后数字上面越大越好。

2、两个字母相同,那么是+5,其他都要减一个数,那么问题来了,这里千万不要以为相同就是最好的,如果这里认为相同就是最好的,那么你用的是贪心而不是dp了。

3、我们取之前的解为Y1,Y2,Y3,123对应上面三个状态,max(Y1+5,Y2-5,Y3-5)这里5是个虚数,可能是0也可能是负数。

4、要注意的有两点,第一,这个状态的之前那个状态的解,是不同的!如下面所示,如果我们处理第二个字符时候可能出现之前的情况就有下面三种

ATGC

GGGG

ATGC

-GGGG

-ATGC

GGGG

第二,Y1,Y2,Y3,是不同的,所以要取这三个值得max。

那么初始值呢?

初始值一般是二维数组的0行0列,这里要注意的是,这里的初始值不全是0,看看下面的情况

ATGC - - - -

- - - -GGGG

所以初始值应该是每一个字母都和空对应,而且要在之前那个值加上去,之前A和空对应如果是-3,那么T和空对应如果是-1,在二维数组中T这里的值应该是-4

最后输出二维数组中最右下角的值就是最后的解。

这里灵活之处是利用一个二维数组去保存了两个字母之间的关系,所以看起来代码特别清晰。

之后会对动态规划再细说的,这次就说这么多。

时间: 2024-11-17 16:52:20

动态规划1-----------poj1080的相关文章

POJ1080 Human Gene Functions 动态规划 LCS的变形

题意读了半年,唉,给你两串字符,然后长度不同,你可以用'-'把它们补成相同长度,补在哪里取决于得分,它会给你一个得分表,问你最大得分 跟LCS很像的DP数组 dp[i][j]表示第一个字符串取第i个元素第二个字符串取第三个元素,然后再预处理一个得分表加上即可 得分表: score['A']['A'] = score['C']['C'] = score['G']['G'] = score['T']['T'] = 5; score['A']['C'] = score['C']['A'] = -1;

Leetcode 494 Target Sum 动态规划 背包+滚动数据

这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20))和一个数S c1a1c2a2c3a3......cnan = S, 其中ci(1<=i<=n)可以在加号和减号之中任选. 求有多少种{c1,c2,c3,...,cn}的排列能使上述等式成立. 例如: 输入:nums is [1, 1, 1, 1, 1], S is 3. 输出 : 5符合要求5种

活动选择的贪心算法与动态规划(未完成)

// greedy_algorithm.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include<queue> using namespace std; #define NofActivity 11 int c[NofActivity + 1][NofActivity + 1]; int reme[NofActivity + 1][NofActivity + 1]; //活动的

求不相邻金币相加和的最大值--动态规划1

求不相邻金币相加和的最大值. 输入n个金币的金币面值(正数自定义),求这些金币不相邻和的最大值. 动态规划问题1 设f(n)为第n个金币数的最大值,f(0)=0,f(1)=a[1],输入的数组从下标为1开始. f(n)=max{a[n]+f(n-2),f(n-1)}. 代码如下: import java.util.Scanner; public class Jin_bi_zui_da_zhi { public static void main(String[] args) { Scanner s

[动态规划] 黑客的攻击 Hacker&#39;s CrackDown Uva 11825

抽象为数学模型就是,  取尽可能多的互不相交的子集 ,  使得每一个子集都能覆盖全集 #include <algorithm> #include <cstring> #include <cstdio> using namespace std; int n; int P[1000],cover[1000],f[1000]; int main(){ scanf("%d", &n); for (int i = 0; i < n;i++) {

Beauty Of algorithms(七)动态规划 钢条分割 矩阵链乘 最长公共子序列 最优二叉树

1.动态规划                动态规划的方法与方法类似,英文"dynamic programming",这里的programming不是程序的意思,而是一种表格法.都是通过组合子问题的解来解决原问题,分治方法将划分为互不相交的子问题,递归的求解子问题,再将它们的解组合起来求出原问题的解.与之相反动态规划应用于子问题的重叠情况,即不同的子问题具有公共的子问题,子问题的求解是递归进行 的,将其划分为更小的子问题,动态规划,每个子问题只求解一次,将其保存在表格中,从而无需每次求

Hdoj 1176 免费馅饼 【动态规划】

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 26110    Accepted Submission(s): 8905 Problem Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的1

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

pat 1068 动态规划/Fina More Conis

1068. Find More Coins (30) Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special re