POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html

直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是

sum=A+A2+...+Ak/2+A(k/2)*(A+A2+...+Ak/2)    k为偶数时;

sum=A+A2+...+A(k-1)/2+A((k-1)/2)*(A+A2+...+A(k-1)/2)+Ak    k为奇数时。

然后递归二分求和

PS:刚开始mat定义的是__int64,于是贡献了n次TLE。。。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

int n,m;
const int N=55;

struct Mat
{
    int mat[N][N];
};
Mat Multiply(Mat a, Mat b)
{
    Mat c;
    memset(c.mat, 0, sizeof(c.mat));
    for(int k = 0; k < n; ++k)
        for(int i = 0; i < n; ++i)
            if(a.mat[i][k])
                for(int j = 0; j < n; ++j)
                    if(b.mat[k][j])
                        c.mat[i][j] = (c.mat[i][j] +a.mat[i][k] * b.mat[k][j])%m;
    return c;
}
Mat QuickPower(Mat a, int k)
{
    Mat c;
    memset(c.mat,0,sizeof(c.mat));
    for(int i = 0; i < n; ++i)
        c.mat[i][i]=1;
    for(; k; k >>= 1)
    {
        if(k&1) c = Multiply(c,a);
        a = Multiply(a,a);
    }
    return c;
}
Mat Add(Mat a,Mat b)
{
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            a.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%m;
    return a;
}
Mat Solve(Mat a,int k)
{
    if(k==1)
        return a;
    Mat e,ret;
    memset(e.mat,0,sizeof(e.mat));
    for(int i=0; i<n; i++)
        e.mat[i][i]=1;
    ret=Multiply(Add(e,QuickPower(a,k>>1)),Solve(a,k>>1));
    if(k%2)
        return Add(ret,QuickPower(a,k));
    return ret;
}
int main()
{
    //freopen("in.txt","r",stdin);
    int k;
    scanf("%d%d%d",&n,&k,&m);
    Mat a;
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            scanf("%d",&a.mat[i][j]);
    Mat ans=Solve(a,k);
    for(int i=0; i<n; i++)
    {
        for(int j=0; j<n-1; j++)
            printf("%d ",ans.mat[i][j]);
        printf("%d\n",ans.mat[i][n-1]);
    }
    return 0;
}
时间: 2024-10-29 02:48:06

POJ 3233 Matrix Power Series 矩阵快速幂+二分求和的相关文章

POJ 3233 - Matrix Power Series ( 矩阵快速幂 + 二分)

POJ 3233 - Matrix Power Series ( 矩阵快速幂 + 二分) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; #define MAX_SIZE 30 #define CLR( a, b ) memset( a, b, sizeof(a) ) int MOD = 0; int n, k; st

POJ 3233 Matrix Power Series (矩阵快速幂+二分)

Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 16403   Accepted: 6980 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas

poj 3233 Matrix Power Series - 矩阵快速幂

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n li

POJ3233:Matrix Power Series(矩阵快速幂+二分)

http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9.这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模

poj 3233 Matrix Power Series(矩阵二分,快速幂)

Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted: 6724 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas

POJ 3233-Matrix Power Series(矩阵快速幂+二分求矩阵和)

Matrix Power Series Time Limit:3000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 3233 Appoint description:  System Crawler  (2015-02-28) Description Given a n × n matrix A and a positive integer k, find the

POJ 3233 Matrix Power Series(矩阵+二分)

题目大意:求由矩阵 A构成的矩阵 S = A + A^2 + A^3 + - + A^k.k的取值范围是:10^9数据很大,应该二分. 对于一个k来说,s(k) = (1+A^(k/2)) *( A+A^2+--+A^(k/2)).如果k为奇数的话需要加上A^(k/2 + 1). 所以二分求和,复杂度就降下来了,当然还得用到矩阵快速幂. Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions

Matrix Power Series(矩阵快速幂)

矩阵快速幂:http://www.cnblogs.com/kuangbin/archive/2012/08/17/2643347.html Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 16341   Accepted: 6966 Description Given a n × n matrix A and a positive integer k, find the sum S

poj3233 Matrix Power Series 矩阵快速幂

题目链接: http://poj.org/problem?id=3233 题意: 给你A矩阵,A矩阵是n*n的一个矩阵,现在要你求S = A + A^2 + A^3 + - + A^k.那么s一定也是一个N*N的矩阵,最后要你输出s,并且s的每一个元素对m取余数 思路: 令Sk-1=I+A+A^2+.....+A^(k-1) 则Sk=I+A+A^2+.....+A^k+A^k 所以 Sk=Sk-1+A^k 答案就是 mat[i+n][j] 代码: 1 #include <iostream> 2