My Reading List - Machine Learning && Computer Vision

本博客汇总了个人在学习过程中所看过的一些论文、代码、资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中。

Machine Learning

(1) Machine Learning Video Library - Caltech
说明:罗列了机器学习的常用算法以及机器学习图谱

(2) Deep Learning - Bengio

说明:Deep Learning三大牛之一Bengio写的一本书

(3) Understanding LSTM Networks

说明:非常棒的LSTM教程

(4) Hacker‘s guide to Neural Networks

说明:Standford大学CS博士生Andrej Karpathy写的神经网络学习指南

(5) The Unreasonable Effectiveness of Recurrent Neural Networks

说明:同样Andrej Karpathy写的关于RNN的博客

Computer Vision

Detction Project

(1) RCNN:

Paper: http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Code: https://github.com/rbgirshick/rcnn

(2) Fast-RCNN: 
Paper: http://arxiv.org/pdf/1504.08083v1.pdf

Code: https://github.com/rbgirshick/fast-rcnn

(3) Faster-Rcnn: 
Paper: http://arxiv.org/pdf/1506.01497v1.pdf

Code: UnRelease

(4) SPP-Net: 
Paper: http://arxiv.org/pdf/1406.4729v4.pdf

Code: https://github.com/ShaoqingRen/SPP_net

(5) YOLO:

Paper: http://arxiv.org/pdf/1506.02640v3.pdf

Code: http://pjreddie.com/darknet/yolo/

(6) End-to-end people detection in crowded scenes:CNN与LSTM结合的目标检测方法

Paper: http://arxiv.org/pdf/1506.04878v3.pdf

Code: https://github.com/Russell91/reinspect

Tracking

(1) CMT: 
Paper:

cvpr2014: http://www.gnebehay.com/publications/cvpr_2015/cvpr_2015.pdf

wacv2014: http://www.gnebehay.com/publications/wacv_2014/wacv_2014.pdf

Website: http://www.gnebehay.com/cmt/

Code:

Python: https://github.com/gnebehay/CMT

C++: https://github.com/gnebehay/CppMT

Helpful Blog:

songrotek: http://blog.csdn.net/songrotek/article/details/47662617

SuperResolution

(1) SCSR 
Paper: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4587647 
Code: http://www.ifp.illinois.edu/~jyang29/codes/ScSR.rar 
Website: http://www.ifp.illinois.edu/~jyang29/ScSR.htm

(2) SRCNN 
Paper: 
eccv2014: http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf 
T-PAMI: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7115171 
Website: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html 
Code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

People

(1) Ross B. Girshick - The Author of RCNN、Fast-RCNN 
Website: http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 
Github: https://github.com/rbgirshick

(2) Shaoqing Ren - The Author of Faster-Rcnn、SPP-Net 
Website: http://home.ustc.edu.cn/~sqren/ 
Github: https://github.com/ShaoqingRen

(3) Georg Nebehay - The Author of CMT 
Website: http://www.gnebehay.com 
Github: https://github.com/gnebehay

(4) Jianchao Yang - The Author of SCSR 
Website: http://www.ifp.illinois.edu/~jyang29/

Interestiing Things

(1) 全景图 
作者:M.S_2308 
介绍: http://www.guokr.com/post/444888/ 
分析:http://www.guokr.com/post/445059/ 
软件:http://matthewalunbrown.com/autostitch/autostitch.html

(2) Kaggle Competition: Denoising Dirty Documents 
Proplem Website: https://www.kaggle.com/c/denoising-dirty-documents/data 
Solution Website: http://colinpriest.com/

时间: 2024-10-05 21:53:12

My Reading List - Machine Learning && Computer Vision的相关文章

Awesome Machine Learning

Awesome Machine Learning  A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you want to contribute to this list (please do), send me a pull request or contact me @josephmisiti Als

【转载】Machine Learning CMSC 422 Spring 2013

Machine LearningCMSC 422Spring 2013 Schedule: MWF 4:00pm-4:50pm Location: CSIC 2117 Instructor: Hal Daume III:  Office Hours: AVW 3227; Fri 2:45-3:45 or by appointment Piazza: UMD/cs422 TAs: Phil Dasler (office hours: Thr 2:00-3:00 in TA room)   Josh

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器

Background reading: Forsyth and Ponce, Computer Vision Chapter 7 Image sampling and quantization Types of images: binary, gray scale, color Resolution: DPI: dots per inch, spatial pixel density Image histograms: histogram of an image provides the fre

Teaching Your Computer To Play Super Mario Bros. – A Fork of the Google DeepMind Atari Machine Learning Project

Teaching Your Computer To Play Super Mario Bros. – A Fork of the Google DeepMind Atari Machine Learning Project Posted by ehrenbrav on August 25, 2016Leave a comment (14)Go to comments For those who want to get right to the good stuff, the installati

Deep Learning for Computer Vision with MATLAB and cuDNN(译文)

翻译水平有限,欢迎阅读原文 一.深度学习 当前,深度学习已经成为一个热门话题.随着深度学习算法和GPU技术的发展,我们已经能够解决许多领域(计算机视觉.自然语言处理和机器人学)曾经认为不可能的事情. 深度学习是建立在传统的深度神经网络之上的.最近几年的热点是大数据集和强大的GPUs的使用.神经网络本质上是一种并行算法,因此多核GPUs的使用能够明显的减少用于训练深度神经网络的时间.以下,我将会讨论如何使用MATLAB以及深度卷积神经网络和GPUs开发一个对象识别系统 二.为什么将深度学习用于计算

How do you explain Machine Learning and Data Mining to non Computer Science people?

How do you explain Machine Learning and Data Mining to non Computer Science people? Pararth Shah, ML Enthusiast Answered Dec 22, 2012 · Featured on VentureBeat · Upvoted by Melissa Dalis, CS & Math major at Duke and Alberto Bietti, PhD student in mac

ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed Reza Zadeh (@Reza_Zadeh). Reza is a Consulting Professor in the Institute for Computational and Mathematical Engineering at Stanford University and a

机器学习算法之旅A Tour of Machine Learning Algorithms

In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe

机器学习(Machine Learning)&深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L