War
Time Limit: 8000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 98 Accepted Submission(s): 28
Special Judge
Problem Description
Long long ago there are two countrys in the universe. Each country haves its own manor in 3-dimension space. Country A‘s manor occupys x^2+y^2+z^2<=R^2. Country B‘s manor occupys x^2+y^2<=HR^2 && |z|<=HZ. There may be a war between them. The occurrence of a
war have a certain probability.
We calculate the probability as follow steps.
1. VC=volume of insection manor of A and B.
2. VU=volume of union manor of A and B.
3. probability=VC/VU
Input
Multi test cases(about 1000000). Each case contain one line. The first line contains three integers R,HR,HZ. Process to end of file.
[Technical Specification]
0< R,HR,HZ<=100
Output
For each case,output the probability of the war which happens between A and B. The answer should accurate to six decimal places.
Sample Input
1 1 1 2 1 1
Sample Output
0.666667 0.187500
Source
题解及代码:
这道题的意思很简单:给定中心重合的一个球和一个圆柱,求出其重合体积占所有体积的比例。
这题写起来很麻烦,因为要分成5类分别写(可耻de把官方的图扣下来 = =!)
分类大致就是分成这5类,积分的方式这里使用的是simpson积分法,只要知道被积函数和上下限就可以了,不用自己做不定积分。
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <map> using namespace std; const double pi=3.14159265358979,eps=1e-7; double r,hr,hz; double f(double n) { return pi*(r*r-n*n); } double simpson(double a,double b) { return (b-a)/6.0*(f(a)+4*f((a+b)/2.0)+f(b)); } double cal(double a,double b) { double sum=simpson(a,b),mid=(a+b)/2.0; double t=simpson(a,mid)+simpson(mid,b); if(fabs(t-sum)<eps) return sum; return cal(a,mid)+cal(mid,b); } int main() { while(scanf("%lf%lf%lf",&r,&hr,&hz)!=EOF) { double v=0,hv=0; if(hr>=r&&hz>=r) { v=4.0/3.0*pi*r*r*r; hv=2*pi*hr*hr*hz; printf("%.6lf\n",v/hv); continue; } if(hr>=r&&hz<r) { v=4.0/3.0*pi*r*r*r; double t=2*cal(hz,r); hv=2*pi*hr*hr*hz; printf("%.6lf\n",(v-t)/(hv+t)); continue; } if(r*r>=hr*hr+hz*hz) { v=4.0/3.0*pi*r*r*r; hv=2*pi*hr*hr*hz; printf("%.6lf\n",hv/v); continue; } if(hr<r&&hz>=r) { v=4.0/3.0*pi*r*r*r; double t=2*cal(sqrt(r*r-hr*hr),r)+2*sqrt(r*r-hr*hr)*pi*hr*hr; hv=2*pi*hr*hr*hz; printf("%.6lf\n",t/(hv+v-t)); continue; } v=4.0/3.0*pi*r*r*r; hv=2*pi*hr*hr*hz; double t=2*cal(sqrt(r*r-hr*hr),hz)+2*sqrt(r*r-hr*hr)*pi*hr*hr; printf("%.6lf\n",t/(hv+v-t)); } return 0; }