slist(single linked list)是单向链表。它不是STL的标准,它与标准list的主要不同在于迭代器。slist的迭代器是Forward iterator,而list的迭代器是Bidirectional iterator,所以slist有着更多的限制。从另一方面看,slist消耗空间更小,一些操作更快。由于slist是单向的,所以在查找迭代器的前一个结点时比较麻烦,要从头开始找。也就是说slist在头结点插入和删除,在其他位置操作代价都比较大。
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_slist.h 完整列表 /* * Copyright (c) 1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_SLIST_H #define __SGI_STL_INTERNAL_SLIST_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif // 单向结点的结构 struct __slist_node_base { __slist_node_base* next; }; //全局函数:在prev_node后插入new_node inline __slist_node_base* __slist_make_link(__slist_node_base* prev_node, __slist_node_base* new_node) { new_node->next = prev_node->next; prev_node->next = new_node; return new_node; } //全局函数,找出某一个结点的前面的结点。由于是单向链表,需要从头往后找。 //找不到的话返回最后一个节点的next,即NULL inline __slist_node_base* __slist_previous(__slist_node_base* head, const __slist_node_base* node) { while (head && head->next != node) // 在單向串列中,只能採用循序搜尋法 head = head->next; return head; } inline const __slist_node_base* __slist_previous(const __slist_node_base* head, const __slist_node_base* node) { while (head && head->next != node) head = head->next; return head; } /* 把(before_first before_last]插入到pos后面,不包括before_first,包括before_last (before_first before_last]在原有链表上移除 */ inline void __slist_splice_after(__slist_node_base* pos, __slist_node_base* before_first, __slist_node_base* before_last) { //pos==before_first的话操作无意义(操作前后不变化) //pos==before_last的话会形成环。难道不能形成环? if (pos != before_first && pos != before_last) { __slist_node_base* first = before_first->next; __slist_node_base* after = pos->next; //(before_first before_last]在原有链表上移除 before_first->next = before_last->next; //插入到pos后面 pos->next = first; before_last->next = after; } } //单向链表反转,反转node后面的结点(包括node)反转后node为尾结点 inline __slist_node_base* __slist_reverse(__slist_node_base* node) { __slist_node_base* result = node; node = node->next; result->next = 0;//node成为尾结点了 /*非递归反转单向链表。维护两个指针node和result,node在前,result在后 node->next = result;使两个结点反转。依次移动指针直到末尾。 */ while(node) { __slist_node_base* next = node->next; node->next = result;//反转 //下面两步完成指针后移 result = node; node = next; } return result; } // 单向链表结点的结构。继承了__slist_node_base,其中有next指针 //next指针是__slist_node_base*类型,基类指针可以指向派生类对象 template <class T> struct __slist_node : public __slist_node_base { T data; }; //单向链表的迭代器的基类 struct __slist_iterator_base { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef forward_iterator_tag iterator_category; // 注意,是单向的 __slist_node_base* node; // 指向结点的指针 //构造函数,用指针类初始化 __slist_iterator_base(__slist_node_base* x) : node(x) {} //迭代器前进一个位置 void incr() { node = node->next; } //判断迭代器是否相等 bool operator==(const __slist_iterator_base& x) const { return node == x.node; } bool operator!=(const __slist_iterator_base& x) const { return node != x.node; } }; //单向链表的迭代器的派生类。派生类没有再定义数据成员,只是实现了几个 //成员函数。 template <class T, class Ref, class Ptr> struct __slist_iterator : public __slist_iterator_base { typedef __slist_iterator<T, T&, T*> iterator; typedef __slist_iterator<T, const T&, const T*> const_iterator; typedef __slist_iterator<T, Ref, Ptr> self; typedef T value_type; typedef Ptr pointer; typedef Ref reference; typedef __slist_node<T> list_node; //以下几个构造函数都是通过调用基类的构造函数来初始化的 //用指针来初始化,指针类型有转换 __slist_iterator(list_node* x) : __slist_iterator_base(x) {} // 默认构造函数 __slist_iterator() : __slist_iterator_base(0) {} //复制构造函数 __slist_iterator(const iterator& x) : __slist_iterator_base(x.node) {} reference operator*() const { return ((list_node*) node)->data; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ //前进,没有后退 self& operator++() { incr(); return *this; } self operator++(int) { self tmp = *this; incr(); return tmp; } }; #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION inline ptrdiff_t* distance_type(const __slist_iterator_base&) { return 0; } inline forward_iterator_tag iterator_category(const __slist_iterator_base&) { return forward_iterator_tag(); } template <class T, class Ref, class Ptr> inline T* value_type(const __slist_iterator<T, Ref, Ptr>&) { return 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ //全局函数,计算node结点到尾结点的距离,如果node是头结点,就是计算slist长度 inline size_t __slist_size(__slist_node_base* node) { size_t result = 0; for ( ; node != 0; node = node->next) ++result; // 累計 return result; } // 单向链表,默认使用alloc空间配置器 template <class T, class Alloc = alloc> class slist { public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef __slist_iterator<T, T&, T*> iterator; typedef __slist_iterator<T, const T&, const T*> const_iterator; private: typedef __slist_node<T> list_node; typedef __slist_node_base list_node_base; typedef __slist_iterator_base iterator_base; typedef simple_alloc<list_node, Alloc> list_node_allocator; //创建一个结点,用x初始化该结点 static list_node* create_node(const value_type& x) { list_node* node = list_node_allocator::allocate(); // 配置空間 __STL_TRY { construct(&node->data, x); // 在空间上构建元素 node->next = 0; } //commit or rollback __STL_UNWIND(list_node_allocator::deallocate(node)); return node; } static void destroy_node(list_node* node) { destroy(&node->data); // 析构 list_node_allocator::deallocate(node); // 释放空间 } //用n个值为x的结点初始化链表 void fill_initialize(size_type n, const value_type& x) { head.next = 0;//头结点归零 __STL_TRY { _insert_after_fill(&head, n, x); } __STL_UNWIND(clear()); } //用一段元素初始化链表 #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last) { head.next = 0; __STL_TRY { _insert_after_range(&head, first, last); } __STL_UNWIND(clear()); } #else /* __STL_MEMBER_TEMPLATES */ void range_initialize(const value_type* first, const value_type* last) { head.next = 0; __STL_TRY { _insert_after_range(&head, first, last); } __STL_UNWIND(clear()); } void range_initialize(const_iterator first, const_iterator last) { head.next = 0; __STL_TRY { _insert_after_range(&head, first, last); } __STL_UNWIND(clear()); } #endif /* __STL_MEMBER_TEMPLATES */ private: list_node_base head; // 头结点,注意:它不是指针 public: slist() { head.next = 0; } //构造函数 slist(size_type n, const value_type& x) { fill_initialize(n, x); } slist(int n, const value_type& x) { fill_initialize(n, x); } slist(long n, const value_type& x) { fill_initialize(n, x); } //value_type()说明要支持默认构造函数 explicit slist(size_type n) { fill_initialize(n, value_type()); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> slist(InputIterator first, InputIterator last) { range_initialize(first, last); } #else /* __STL_MEMBER_TEMPLATES */ slist(const_iterator first, const_iterator last) { range_initialize(first, last); } slist(const value_type* first, const value_type* last) { range_initialize(first, last); } #endif /* __STL_MEMBER_TEMPLATES */ //用一个链表来初始化本链表 slist(const slist& L) { range_initialize(L.begin(), L.end()); } //用链表L给本链表赋值 slist& operator= (const slist& L); //析构 ~slist() { clear(); } public: //begin()是返回指向第一个结点的迭代器,head对外不可见 iterator begin() { return iterator((list_node*)head.next); } const_iterator begin() const { return const_iterator((list_node*)head.next);} //end返回空迭代器,即最后一个结点的下一个位置 iterator end() { return iterator(0); } const_iterator end() const { return const_iterator(0); } //slist大小 size_type size() const { return __slist_size(head.next); } //无意义吧? size_type max_size() const { return size_type(-1); } bool empty() const { return head.next == 0; } //两个slist互换,只是交换head的next指针而已 void swap(slist& L) { list_node_base* tmp = head.next; head.next = L.head.next; L.head.next = tmp; } public: //友元函数 friend bool operator== __STL_NULL_TMPL_ARGS(const slist<T, Alloc>& L1, const slist<T, Alloc>& L2); public: // 取头部元素 reference front() { return ((list_node*) head.next)->data; } const_reference front() const { return ((list_node*) head.next)->data; } //插入元素,注意:这是在头部插入元素 void push_front(const value_type& x) { __slist_make_link(&head, create_node(x)); } // 注意,沒有 push_back() //从头部取走元素(删除)。 void pop_front() { list_node* node = (list_node*) head.next; //没有判断node是否为空指针 head.next = node->next; destroy_node(node); } //找pos前面的迭代器 iterator previous(const_iterator pos) { return iterator((list_node*) __slist_previous(&head, pos.node)); } const_iterator previous(const_iterator pos) const { return const_iterator((list_node*) __slist_previous(&head, pos.node)); } //在pos后面插入元素(一个或多个) private: list_node* _insert_after(list_node_base* pos, const value_type& x) { return (list_node*) (__slist_make_link(pos, create_node(x))); } void _insert_after_fill(list_node_base* pos, size_type n, const value_type& x) { for (size_type i = 0; i < n; ++i) pos = __slist_make_link(pos, create_node(x)); } //在pos后面插入一段元素 #ifdef __STL_MEMBER_TEMPLATES template <class InIter> void _insert_after_range(list_node_base* pos, InIter first, InIter last) { while (first != last) { pos = __slist_make_link(pos, create_node(*first)); ++first; } } #else /* __STL_MEMBER_TEMPLATES */ void _insert_after_range(list_node_base* pos, const_iterator first, const_iterator last) { while (first != last) { pos = __slist_make_link(pos, create_node(*first)); ++first; } } void _insert_after_range(list_node_base* pos, const value_type* first, const value_type* last) { while (first != last) { pos = __slist_make_link(pos, create_node(*first)); ++first; } } #endif /* __STL_MEMBER_TEMPLATES */ //删除pos的下一个元素,并返回新的下一个元素 list_node_base* erase_after(list_node_base* pos) { list_node* next = (list_node*) (pos->next); // 下一个元素 list_node_base* next_next = next->next; // 下下个元素 pos->next = next_next; // 串接 destroy_node(next); // 刪除 return next_next; // 返回 } //删除(before_first last_node),不包括这两个结点 list_node_base* erase_after(list_node_base* before_first, list_node_base* last_node) { list_node* cur = (list_node*) (before_first->next); while (cur != last_node) { list_node* tmp = cur; cur = (list_node*) cur->next; destroy_node(tmp); } before_first->next = last_node; return last_node; } public: //在pos后面插入一个或者多个或者一段元素 iterator insert_after(iterator pos, const value_type& x) { return iterator(_insert_after(pos.node, x)); } iterator insert_after(iterator pos) { return insert_after(pos, value_type()); } void insert_after(iterator pos, size_type n, const value_type& x) { _insert_after_fill(pos.node, n, x); } void insert_after(iterator pos, int n, const value_type& x) { _insert_after_fill(pos.node, (size_type) n, x); } void insert_after(iterator pos, long n, const value_type& x) { _insert_after_fill(pos.node, (size_type) n, x); } #ifdef __STL_MEMBER_TEMPLATES template <class InIter> void insert_after(iterator pos, InIter first, InIter last) { _insert_after_range(pos.node, first, last); } #else /* __STL_MEMBER_TEMPLATES */ void insert_after(iterator pos, const_iterator first, const_iterator last) { _insert_after_range(pos.node, first, last); } void insert_after(iterator pos, const value_type* first, const value_type* last) { _insert_after_range(pos.node, first, last); } #endif /* __STL_MEMBER_TEMPLATES */ //在pos前面插入元素。在插入之前首先要找到pos前面的结点 iterator insert(iterator pos, const value_type& x) { return iterator(_insert_after(__slist_previous(&head, pos.node), x)); } iterator insert(iterator pos) { return iterator(_insert_after(__slist_previous(&head, pos.node), value_type())); } void insert(iterator pos, size_type n, const value_type& x) { _insert_after_fill(__slist_previous(&head, pos.node), n, x); } void insert(iterator pos, int n, const value_type& x) { _insert_after_fill(__slist_previous(&head, pos.node), (size_type) n, x); } void insert(iterator pos, long n, const value_type& x) { _insert_after_fill(__slist_previous(&head, pos.node), (size_type) n, x); } #ifdef __STL_MEMBER_TEMPLATES template <class InIter> void insert(iterator pos, InIter first, InIter last) { _insert_after_range(__slist_previous(&head, pos.node), first, last); } #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator pos, const_iterator first, const_iterator last) { _insert_after_range(__slist_previous(&head, pos.node), first, last); } void insert(iterator pos, const value_type* first, const value_type* last) { _insert_after_range(__slist_previous(&head, pos.node), first, last); } #endif /* __STL_MEMBER_TEMPLATES */ public: //擦除pos后面的元素(一个或多个) iterator erase_after(iterator pos) { return iterator((list_node*)erase_after(pos.node)); } iterator erase_after(iterator before_first, iterator last) { return iterator((list_node*)erase_after(before_first.node, last.node)); } iterator erase(iterator pos) { return (list_node*) erase_after(__slist_previous(&head, pos.node)); } //擦出一段元素 iterator erase(iterator first, iterator last) { return (list_node*) erase_after(__slist_previous(&head, first.node), last.node); } //设置slist的大小,初始化为x或默认值T()(要支持默认构造函数) void resize(size_type new_size, const T& x); void resize(size_type new_size) { resize(new_size, T()); } void clear() { erase_after(&head, 0); } public: //把[before_first + 1, before_last + 1)添加到pos后面。时间复杂度为O(n) void splice_after(iterator pos, iterator before_first, iterator before_last) { if (before_first != before_last) __slist_splice_after(pos.node, before_first.node, before_last.node); } //在pos后面插入prev void splice_after(iterator pos, iterator prev) { __slist_splice_after(pos.node, prev.node, prev.node->next); } // Linear in distance(begin(), pos), and linear in L.size(). //在pos前面插入slist L void splice(iterator pos, slist& L) { if (L.head.next) __slist_splice_after(__slist_previous(&head, pos.node), &L.head, __slist_previous(&L.head, 0)); } // Linear in distance(begin(), pos), and in distance(L.begin(), i). //在pos前面插入slist L的一段元素(L.begin(), i) void splice(iterator pos, slist& L, iterator i) { __slist_splice_after(__slist_previous(&head, pos.node), __slist_previous(&L.head, i.node), i.node); } // Linear in distance(begin(), pos), in distance(L.begin(), first), // and in distance(first, last). //在pos前面插入slist L的一段元素(first, last) void splice(iterator pos, slist& L, iterator first, iterator last) { if (first != last) __slist_splice_after(__slist_previous(&head, pos.node), __slist_previous(&L.head, first.node), __slist_previous(first.node, last.node)); } public: //反转 void reverse() { if (head.next) head.next = __slist_reverse(head.next); } //移除值为val的元素 void remove(const T& val); void unique(); void merge(slist& L); void sort(); #ifdef __STL_MEMBER_TEMPLATES template <class Predicate> void remove_if(Predicate pred); template <class BinaryPredicate> void unique(BinaryPredicate pred); template <class StrictWeakOrdering> void merge(slist&, StrictWeakOrdering); template <class StrictWeakOrdering> void sort(StrictWeakOrdering comp); #endif /* __STL_MEMBER_TEMPLATES */ }; template <class T, class Alloc> slist<T, Alloc>& slist<T,Alloc>::operator=(const slist<T, Alloc>& L) { if (&L != this) {//防止自身赋值 list_node_base* p1 = &head; list_node* n1 = (list_node*) head.next; const list_node* n2 = (const list_node*) L.head.next; while (n1 && n2) {//前面的公共长度部分用值赋值 n1->data = n2->data; p1 = n1; n1 = (list_node*) n1->next; n2 = (const list_node*) n2->next; } if (n2 == 0)//this链表比L长,擦出this多出的部分 erase_after(p1, 0); else//this链表比L短,在后面插入L多出的部分 _insert_after_range(p1, const_iterator((list_node*)n2), const_iterator(0)); } return *this; } //判断两个链表是否相等。相等是指长度相同,且对应位置结点的值相等 template <class T, class Alloc> bool operator==(const slist<T, Alloc>& L1, const slist<T, Alloc>& L2) { typedef typename slist<T,Alloc>::list_node list_node; list_node* n1 = (list_node*) L1.head.next; list_node* n2 = (list_node*) L2.head.next; while (n1 && n2 && n1->data == n2->data) { n1 = (list_node*) n1->next; n2 = (list_node*) n2->next; } return n1 == 0 && n2 == 0; } //比较两个slist。lexicographical_compare为STL算法 template <class T, class Alloc> inline bool operator<(const slist<T, Alloc>& L1, const slist<T, Alloc>& L2) { return lexicographical_compare(L1.begin(), L1.end(), L2.begin(), L2.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER //交换两个slist template <class T, class Alloc> inline void swap(slist<T, Alloc>& x, slist<T, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ //重新定义slist的大小。 template <class T, class Alloc> void slist<T, Alloc>::resize(size_type len, const T& x) { list_node_base* cur = &head; while (cur->next != 0 && len > 0) { --len; cur = cur->next; } if (cur->next) //如果slist长度大于len,擦除多余的 erase_after(cur, 0); else//如果slist长度小于len,在后面插入x _insert_after_fill(cur, len, x); } //移除值为val的结点 template <class T, class Alloc> void slist<T,Alloc>::remove(const T& val) { list_node_base* cur = &head; //由于是单向的,所以移除时,移除的是next->next while (cur && cur->next) { if (((list_node*) cur->next)->data == val) erase_after(cur); else cur = cur->next; } } //相邻结点值相同的话,移除后面那个 template <class T, class Alloc> void slist<T,Alloc>::unique() { list_node_base* cur = head.next; if (cur) { while (cur->next) { if (((list_node*)cur)->data == ((list_node*)(cur->next))->data) erase_after(cur); else cur = cur->next; } } } //合并两个slist,此时两个slist已经升序排列好了 template <class T, class Alloc> void slist<T,Alloc>::merge(slist<T,Alloc>& L) { list_node_base* n1 = &head; while (n1->next && L.head.next) { if (((list_node*) L.head.next)->data < ((list_node*) n1->next)->data) __slist_splice_after(n1, &L.head, L.head.next); n1 = n1->next; } if (L.head.next) { n1->next = L.head.next; L.head.next = 0; } } //按照升序排序。不支持STL sort排序,迭代器不符合要求 //这里是快排,可以参考这里:http://blog.csdn.net/zhizichina/article/details/7538974 template <class T, class Alloc> void slist<T,Alloc>::sort() { if (head.next && head.next->next) { slist carry; slist counter[64]; int fill = 0; while (!empty()) { __slist_splice_after(&carry.head, &head, head.next); int i = 0; while (i < fill && !counter[i].empty()) { counter[i].merge(carry); carry.swap(counter[i]); ++i; } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]); this->swap(counter[fill-1]); } } #ifdef __STL_MEMBER_TEMPLATES //移除符合函数pred的结点 template <class T, class Alloc> template <class Predicate> void slist<T,Alloc>::remove_if(Predicate pred) { list_node_base* cur = &head; while (cur->next) { if (pred(((list_node*) cur->next)->data))//如果pred()为真 erase_after(cur); else cur = cur->next; } } //移除满足pred()的结点 template <class T, class Alloc> template <class BinaryPredicate> void slist<T,Alloc>::unique(BinaryPredicate pred) { list_node* cur = (list_node*) head.next; if (cur) { while (cur->next) { if (pred(((list_node*)cur)->data, ((list_node*)(cur->next))->data)) erase_after(cur); else cur = (list_node*) cur->next; } } } //按照comp函数来合并两个链表。此时两个slist以按照comp排列好了 template <class T, class Alloc> template <class StrictWeakOrdering> void slist<T,Alloc>::merge(slist<T,Alloc>& L, StrictWeakOrdering comp) { list_node_base* n1 = &head; while (n1->next && L.head.next) { if (comp(((list_node*) L.head.next)->data, ((list_node*) n1->next)->data)) __slist_splice_after(n1, &L.head, L.head.next); n1 = n1->next; } if (L.head.next) { n1->next = L.head.next; L.head.next = 0; } } //按照comp排序 template <class T, class Alloc> template <class StrictWeakOrdering> void slist<T,Alloc>::sort(StrictWeakOrdering comp) { if (head.next && head.next->next) { slist carry; slist counter[64]; int fill = 0; while (!empty()) { __slist_splice_after(&carry.head, &head, head.next); int i = 0; while (i < fill && !counter[i].empty()) { counter[i].merge(carry, comp); carry.swap(counter[i]); ++i; } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp); this->swap(counter[fill-1]); } } #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_SLIST_H */ // Local Variables: // mode:C++ // End:
《STL源码剖析》---stl_slist.h阅读笔记
时间: 2024-10-15 09:51:05