C++智能指针 auto_ptr
auto_ptr 是一个轻量级的智能指针, 定义于 memory (非memory.h)中, 命名空间为 std.
auto_ptr 适合用来管理生命周期比较短或者不会被远距离传递的动态对象, 最好是局限于某个函数内部或者是某个类的内部.
使用方法:
std::auto_ptr<int> pt(new int(10));
pt.reset(new int(11));
成员函数
3个重要的函数:
(1) get 获得内部对象的指针, 由于已经重载了()方法, 因此和直接使用对象是一样的.如 auto_ptr <int> sp(new int(1)); sp 与 sp.get()是等价的
(2) release 放弃内部对象的所有权,将内部指针置为空, 返回所内部对象的指针, 此指针需要手动释放
std::auto_ptr<int> ap0(new int(1));
int* pa = ap0.release();
delete pa; // 需要手动释放
(3) reset 销毁内部对象并接受新的对象的所有权(如果使用缺省参数的话,也就是没有任何对象的所有权)
其构造函数被声明为 explicit, 因此不能使用赋值符对其赋值(即不能使用类似这样的形式 auto_ptr<int> p = new int;)
auto_ptr 的特征
(1) auto_ptr 的对象所有权是独占性的.
auto_ptr 的拷贝构造和赋值操作符所接受的参数类型都是非const的引用类型(而一般都应该使用的const引用类型), 其原因在于为了使其内部能调用了 release 方法将原有的对象进行释放, 然后使用新对象替换原有的对象.
因此导致动态对象的所有权被转移了, 新的 auto_ptr 独占了动态对象的所有权. 被拷贝对象在拷贝过程中被修改, 拷贝物与被拷贝物之间是非等价的.
下面的使用方法将会出错:
std::auto_ptr<int> pt1(new int(10));
std::auto_ptr<int> pt2 = pt1;
printf("pt1:%d\n", pt1); // 此时应输出 0
printf("pt1 value:%d\n", *pt1); // 错误, 对象已释放
(2) 不能将 auto_ptr 放入到标准容器中. 标准库容器无准备的拷贝行为, 会导致原 auto_ptr 内的对象被释放, 造成难以发觉的错误.
使用 auto_ptr 的注意事项
(1) auto_ptr 不能指向数组
(2) auto_ptr 不能共享所有权
(3) auto_ptr 不能通过复制操作来初始化
(4) auto_ptr 不能放入容器中使用
(5) auto_ptr 不能作为容器的成员
(6) 不能把一个原生指针给两个智能指针对象管理(对所有的智能指针).
int* p = new int;
auto_ptr<int> ap1(p);
auto_ptr<int> ap2(p); // 错误, p不能给第二个智能指针对象. 会引起两次释放p
VC中的源码实现
template<class _Ty> class auto_ptr { // wrap an object pointer to ensure destruction public: typedef auto_ptr<_Ty> _Myt; typedef _Ty element_type; explicit auto_ptr(_Ty *_Ptr = 0) _THROW0() : _Myptr(_Ptr) { // construct from object pointer } auto_ptr(_Myt& _Right) _THROW0() : _Myptr(_Right.release()) { // construct by assuming pointer from _Right auto_ptr } auto_ptr(auto_ptr_ref<_Ty> _Right) _THROW0() { // construct by assuming pointer from _Right auto_ptr_ref _Ty *_Ptr = _Right._Ref; _Right._Ref = 0; // release old _Myptr = _Ptr; // reset this } template<class _Other> operator auto_ptr<_Other>() _THROW0() { // convert to compatible auto_ptr return (auto_ptr<_Other>(*this)); } template<class _Other> operator auto_ptr_ref<_Other>() _THROW0() { // convert to compatible auto_ptr_ref _Other *_Cvtptr = _Myptr; // test implicit conversion auto_ptr_ref<_Other> _Ans(_Cvtptr); _Myptr = 0; // pass ownership to auto_ptr_ref return (_Ans); } template<class _Other> _Myt& operator=(auto_ptr<_Other>& _Right) _THROW0() { // assign compatible _Right (assume pointer) reset(_Right.release()); return (*this); } template<class _Other> auto_ptr(auto_ptr<_Other>& _Right) _THROW0() : _Myptr(_Right.release()) { // construct by assuming pointer from _Right } _Myt& operator=(_Myt& _Right) _THROW0() { // assign compatible _Right (assume pointer) reset(_Right.release()); return (*this); } _Myt& operator=(auto_ptr_ref<_Ty> _Right) _THROW0() { // assign compatible _Right._Ref (assume pointer) _Ty *_Ptr = _Right._Ref; _Right._Ref = 0; // release old reset(_Ptr); // set new return (*this); } ~auto_ptr() { // destroy the object delete _Myptr; } _Ty& operator*() const _THROW0() { // return designated value #if _ITERATOR_DEBUG_LEVEL == 2 if (_Myptr == 0) _DEBUG_ERROR("auto_ptr not dereferencable"); #endif /* _ITERATOR_DEBUG_LEVEL == 2 */ return (*get()); } _Ty *operator->() const _THROW0() { // return pointer to class object #if _ITERATOR_DEBUG_LEVEL == 2 if (_Myptr == 0) _DEBUG_ERROR("auto_ptr not dereferencable"); #endif /* _ITERATOR_DEBUG_LEVEL == 2 */ return (get()); } _Ty *get() const _THROW0() { // return wrapped pointer return (_Myptr); } _Ty *release() _THROW0() { // return wrapped pointer and give up ownership _Ty *_Tmp = _Myptr; _Myptr = 0; return (_Tmp); } void reset(_Ty *_Ptr = 0) { // destroy designated object and store new pointer if (_Ptr != _Myptr) delete _Myptr; _Myptr = _Ptr; } private: _Ty *_Myptr; // the wrapped object pointer };