POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

首先判断是不是凸多边形

然后判断圆是否在凸多边形内

kuangbin的板子,但是有些地方不明白。

判断多边形不是凸多边形后,为什么用判断点是否在凸多边形内的模板交WA了,而用判断点是否在任意多边形内的模板A了

而且判断点是否在任意多边形的注释,返回值为什么又说是凸多边形~~~

POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const double eps=1e-8;
const double PI = acos(-1.0);

int sgn(double x)
{
    if(fabs(x) < eps) return 0;
    return x < 0 ? -1:1;
}

struct Point
{
    double x,y;
    Point() {}
    Point(double _x,double _y)
    {
        x = _x,y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x,y - b.y);
    }
    //叉积
    double operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    //点积
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    void input()
    {
        scanf("%lf%lf",&x,&y);
    }
};

struct Line
{
    Point p,q;
    Line() {};
    Line(Point _p,Point _q)
    {
        p = _p,q = _q;
    }
};

//*两点间距离
double dist(Point a,Point b)
{
    return sqrt((a-b)*(a-b));
}

//*判断凸多边形
//允许共线边
//点可以是顺时针给出也可以是逆时针给出
//点的编号0~n-1
bool isconvex(Point poly[],int n)
{
    bool s[3];
    memset(s,false,sizeof(s));
    for(int i = 0; i < n; i++)
    {
        s[sgn( (poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]) )+1] = true;
        if(s[0] && s[2])return false;
    }
    return true;
}

//*点到线段的距离
//返回点到线段最近的点
Point NearestPointToLineSeg(Point P,Line L)
{
    Point result;
    double t = ((P-L.p)*(L.q-L.p))/((L.q-L.p)*(L.q-L.p));
    if(t >= 0 && t <= 1)
    {
        result.x = L.p.x + (L.q.x - L.p.x)*t;
        result.y = L.p.y + (L.q.y - L.p.y)*t;
    }
    else
    {
        result = dist(P,L.p) < dist(P,L.q)? L.p:L.q;
    }
    return result;
}

//*判断点在线段上
bool OnSeg(Point P,Line L)
{
    return
        sgn((L.p-P)^(L.q-P)) == 0 &&
        sgn((P.x - L.p.x) * (P.x - L.q.x)) <= 0 &&
        sgn((P.y - L.p.y) * (P.y - L.q.y)) <= 0;
}

//*判断点在凸多边形内
//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
//点的编号:0~n-1
//返回值:
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inConvexPoly(Point a,Point p[],int n)
{
    for(int i = 0; i < n; i++)
    {
        if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1;
        else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0;
    }
    return 1;
}

//*判断线段相交
bool inter(Line l1,Line l2)
{
    return
        max(l1.p.x,l1.q.x) >= min(l2.p.x,l2.q.x) &&
        max(l2.p.x,l2.q.x) >= min(l1.p.x,l1.q.x) &&
        max(l1.p.y,l1.q.y) >= min(l2.p.y,l2.q.y) &&
        max(l2.p.y,l2.q.y) >= min(l1.p.y,l1.q.y) &&
        sgn((l2.p-l1.q)^(l1.p-l1.q))*sgn((l2.q-l1.q)^(l1.p-l1.q)) <= 0 &&
        sgn((l1.p-l2.q)^(l2.p-l2.q))*sgn((l1.q-l2.q)^(l2.p-l2.q)) <= 0;
}

//*判断点在任意多边形内
//射线法,poly[]的顶点数要大于等于3,点的编号0~n-1
//返回值
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inPoly(Point p,Point poly[],int n)
{
    int cnt;
    Line ray,side;
    cnt = 0;
    ray.p = p;
    ray.q.y = p.y;
    ray.q.x = -100000000000.0;//-INF,注意取值防止越界
    for(int i = 0; i < n; i++)
    {
        side.p = poly[i];
        side.q = poly[(i+1)%n];
        if(OnSeg(p,side))return 0;
        //如果平行轴则不考虑
        if(sgn(side.p.y - side.q.y) == 0)
            continue;
        if(OnSeg(side.p,ray))
        {
            if(sgn(side.p.y - side.q.y) > 0)cnt++;
        }
        else if(OnSeg(side.q,ray))
        {
            if(sgn(side.q.y - side.p.y) > 0)cnt++;
        }
        else if(inter(ray,side)) cnt++;
    }
    return cnt % 2 ? 1:-1;
}

Point pot[105],peg;
double rad;

int main()
{
//    freopen("in.txt","r",stdin);
    int n;
    while(~scanf("%d",&n))
    {
        if(n<3) break;
        scanf("%lf",&rad);
        peg.input();
        for(int i=0;i<n;i++)
            pot[i].input();
        if(!isconvex(pot,n))
        {
            puts("HOLE IS ILL-FORMED");
            continue;
        }
        if(inPoly(peg,pot,n)<0)
        {
            puts("PEG WILL NOT FIT");
            continue;
        }
        bool flag=true;
        for(int i=0;i<n-1;i++)
        {
            if( sgn(dist(peg,NearestPointToLineSeg(peg,Line(pot[i],pot[(i+1)%n])))-rad)<0 )
            {
                flag=false;
                break;
            }
        }
        puts(flag? "PEG WILL FIT":"PEG WILL NOT FIT");
    }
    return 0;
}
时间: 2024-11-04 20:41:27

POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内的相关文章

poj 1584 A Round Peg in a Ground Hole 判断多边形是否为凸多边形 + 圆心是否在凸多边形内 + 圆是否在凸多边形内部

题目来源: http://poj.org/problem?id=1584 题意: 给一个多边形, 一个圆心以及半径. 首先判断是否为凸多边形. 如果是凸多边形, 再判断,圆是否在凸多边形内部. 分析: 1) 先判断是否为凸多边形 ,题目给出的顶点是有序的, 即顺时针或是 逆时针.用叉积方向判断. 2) 判断圆在多边形内, 首先判断 圆心是否在多边形内部, 是的话,然后再 判断 圆心到多边形 所有边的 距离d >= r , 即可. 代码如下: const int Max_N = 1005; con

POJ 1584 A Round Peg in a Ground Hole(凸多边形判断 + 点是否在多边形内 + 点到线段的最短距离)

题目:传送门 题意:给你一个圆和一个多边形, 判断多边形是不是凸多边形,如果是,接着判断圆是否在凸多边形内部. #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #inclu

poj 1584 A Round Peg in a Ground Hole(计算几何)

A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5603   Accepted: 1788 Description The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to on

POJ 1584 A Round Peg in a Ground Hole(凸包判定&amp;&amp;圆在凸包内判定)

博客原文地址:http://blog.csdn.net/xuechelingxiao/article/details/39178777 A Round Peg in a Ground Hole 题目大意:按顺时针或逆时针给出多边形的顶点坐标.圆的半径及圆心坐标. 1.求多边形是否是个凸包,若不是输出"HOLE IS ILL-FORMED". 2.如果多边形为凸包,判定圆是否在凸包内,若凸包在园内,输出"PEG WILL FIT",若不在,输出"PEG WI

POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全在n边形内部. 分析 1.判断给出了多边形是不是凸多边形. 2.判断圆包含在凸多边形中:一定要保证圆心在凸多边形里面.然后判断圆心到每条线段的距离要大于等于半径.. #include <iostream> #include <stdio.h> #include <string.h

POJ 1584 A Round Peg in a Ground Hole

先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include<cstdio> #include<cstring> #include<vector> #include<cmath> #include<queue> #include<list> #include<algorithm> us

POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上

题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆时针,dir=-1为顺时针,然后如果后面有两个相邻的边叉积后得出旋转方向为nowdir,如果dir*nowdir < 0,说明方向逆转了,即出现了凹点,说明不是凸多边形. 然后判圆是否在多边形内: 先判圆心是否在多边形内,用环顾法,然后如果在之内,则依次判断圆心与每条凸包边的距离与半径的距离,如果所

POJ 1584 A Round Peg in a Ground Hole(点到直线距离,圆与多边形相交,多边形是否为凸)

题意:给出一个多边形和一个圆,问是否是凸多边形,若是则再问圆是否在凸多边形内部. 分3步: 1.判断是否是凸多边形 2.判断点是否在多边形内部 3.判断点到各边的距离是否大于等于半径 上代码: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using na

poj1584 A Round Peg in a Ground Hole 判断多边形凹凸,点到线的距离【基础计算几何】

大致思路:首先对于所给的洞的点,判断是否是凸多边形,图形的输入和输出可以是顺时针或者逆时针,而且允许多点共线 Debug 了好几个小时,发现如下问题 判断三点是否共线,可用斜率公式判断 POINT point_A, point_B, point_C; if(point_A.x == point_B.x || point_B.x == point_C.x){ if(point_A.x == point_B.x && point_B.x == point_C.x) continue; }els