Python - 线性回归(Linear Regression) 的 Python 实现

背景

学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。

线性回归的 Python 实现:基本思路

  • 导入 Python 包: 有哪些包推荐呢?

  • 准备数据
  • 建模拟合
  • 验证模型的拟合度
  • 预测:用模型来预测新的数据

实现细节

以最简单的线性回归为例,代码参考的是原文。

重点是掌握基本思路,以及关键的几个函数。影响拟合度的因素很多,数据源首当其冲,模型的选择也是关键,这些在实际应用中具体讨论,这里就简单的对应前面的基本思路将 sample 代码及运行结果贴一下,稍加解释。

安装并导入包

根据自己的需要导入

pip install scikit-learn
pip install numpy
pip install statsmodels

from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

准备数据

""" prepare data
x: regressor
y: predictor
reshape: make it two dimentional - one column and many rows
y can also be 2 dimensional
"""

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))
"""
[[ 5]
 [15]
 [25]
 [35]
 [45]
 [55]]
"""
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)
# [ 5 20 14 32 22 38]

建模

'''create a model and fit it'''
model = LinearRegression()
model = model.fit(x, y)
print(model)
# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

验证模型的拟合度

'''get result
y = b0 + b1x
'''
r_sq = model.score(x, y)
print('coefficient of determination(??2) :', r_sq)
# coefficient of determination(??2) : 0.715875613747954
print('intercept:', model.intercept_)
# (标量) 系数b0 intercept: 5.633333333333329 -------this will be an array when y is also 2-dimensional
print('slope:', model.coef_)
# (数组)斜率b1 slope: [0.54]        ---------this will be 2-d array when y is also 2-dimensional

预测

'''predict response
given x, get y from the model y = b0+b1x
'''
y_pred = model.predict(x)
print('predicted response:', y_pred, sep='\n')
#predicted response:
#[8.33333333 13.73333333 19.13333333 24.53333333 29.93333333 35.33333333]

'''forecast'''
z = np.arange(5).reshape((-1, 1))
y = model.predict(z)
print(y)
#[5.63333333 6.17333333 6.71333333 7.25333333 7.79333333]

问题

Reference

Changelog

  • 2020-01-14 init

    本文由博客一文多发平台 OpenWrite 发布!

原文地址:https://www.cnblogs.com/learnbydoing/p/12190168.html

时间: 2024-10-26 02:32:14

Python - 线性回归(Linear Regression) 的 Python 实现的相关文章

Ng第二课:单变量线性回归(Linear Regression with One Variable)

二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          

机器学习方法(一):线性回归Linear regression

开一个机器学习方法科普系列,也做基础回顾之用.学而时习之. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality Reduction: PCA.LDA.Laplacian Eigenmap. LLE. Isomap(修改前面的blog) SVM C3.C4.5 Apriori,FP PageRank minH

Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat)

1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练

机器学习方法:回归(一):线性回归Linear regression

开一个机器学习方法科普系列:做基础回想之用.学而时习之:也拿出来与大家分享.数学水平有限,仅仅求易懂,学习与工作够用.周期会比較长.由于我还想写一些其它的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality Reduction: PCA.LDA.Laplacian Eigenmap. LLE. Is

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

Stanford公开课机器学习---2.单变量线性回归(Linear Regression with One Variable)

单变量线性回归(Linear Regression with One Variable) 2.1 模型表达(Model Representation) m 代表训练集中实例的数量 x 代表特征/输入变量 y 代表目标变量/输出变量 (x,y) 代表训练集中的实例 (x(i),y(i) ) 代表第 i 个观察实例 h 代表学习算法的解决方案或函数也称为假设(hypothesis) 单变量线性回归:只含有一个特征/输入变量 x hθ=θ0+θ1x 2.2 代价函数(Cost Function) 目标

机器学习 (一) 单变量线性回归 Linear Regression with One Variable

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang和 JerryLead 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable 1. 代价函数Cost Function 在单变量线性回归中,已知有一个训练集有一些关于x.y的数据(如×所示),当我们的预测值

机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)

最近在Coursera上看吴大神的Machine Learning,感觉讲的真的很棒.所以觉得应该要好好做做笔记,一方面是加强自己对ML中一些方法的掌握程度和理解,另一方面也能方便自己或者同样爱好ML的同学. 线性回归(Linear Regression) 线性回归(Linear Regression)应该是机器学习中最基本的东西了.所谓回归,想必大家在高中时期的课程里面就接触过,给定一系列离散的点(x0,y0),求一条直线 f(x)=ax+b 以使得最小.在machine learning 中