组合数取mod

条件mod是质数,inv 是逆元,fac是阶层;

用于n在10^5左右

maxn=100505;

ll fact[maxn],inv[maxn];
ll Pow(ll x,ll n){
    ll ans=1,base=x;
    while(n){
        if(n&1) ans=ans*base%mod;
        base=base*base%mod;
        n>>=1;
    }
    return ans;
}
void init(){
    fact[0]=1;
    for (int i = 1; i < maxn; ++i)
    {
        fact[i]=fact[i-1]*i%mod;
    }
    inv[maxn-1]=Pow(fact[maxn-1],mod-2);
    for (int i = maxn-2; i >= 0; --i)
    {
        inv[i]=inv[i+1]*(i+1)%mod;
    }
}
ll C(ll n, ll m)
{
    if(n==m||m==0)
        return 1;
    if(m>n) return 0;
    return ((long long)fact[n]*inv[m]%mod)*inv[n-m]%mod;
}

原文地址:https://www.cnblogs.com/Lamboofhome/p/11722732.html

时间: 2024-10-13 05:48:30

组合数取mod的相关文章

东北育才 DAY2组合数取mod (comb)

组合数取模(comb) [问题描述] 计算C(m,n)mod 9901的值 [输入格式] 从文件comb.in中输入数据. 输入的第一行包含两个整数,m和n [输出格式] 输出到文件comb.out中. 输出一行,一个整数 [样例输入] 2 1 [样例输出] 2 [数据规模与约定] 对于 20%的数据,n<=m<=20 对于 40%的数据,n<=m<=2000 对于 100%的数据,n<=m<=20000 这道题描述很清楚,有很多种做法,第一题还是挺水的,而且很多网站上

排列组合+组合数取模 HDU 5894

1 // 排列组合+组合数取模 HDU 5894 2 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 3 // 思路: 4 // 定好m个人 相邻人之间k个座位 剩下就剩n-(m+1)*k个座位 5 // 剩下座位去插m个不同的盒子==就等价n个相同的球放m个不同的盒子 6 // 然后组合数出来了 7 // 乘n的话是枚举座位,除m是去掉枚举第一个座位的时候,剩下人相邻的座位相对不变的情况 8 9 #include <iostream> 10 #incl

大组合数取模之lucas定理模板,1&lt;=n&lt;=m&lt;=1e9,1&lt;p&lt;=1e6,p必须为素数

typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y

组合数取模Lucas定理及快速幂取模

组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(

toj 4111 组合数取模 暴力分解

题目大意:组合数取模,n和m并不算大,p比较大且是合数. 思路:暴力分解+快速幂 注:暴力也是有区别的,分解质因数时可以用以下work函数,写的非常巧妙,摘录自互联网. 1 #include <iostream> 2 #include <cstring> 3 using namespace std; 4 5 typedef long long ll; 6 const ll mod = 1ll << 32; 7 const int N = 1000001; 8 const

[BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi

BZOJ 3129 [Sdoi2013]方程 不定方程解的个数+组合数取模

题意:链接 方法:不定方程解的个数+组合数取模 解析: 先看n1与n2的部分的限制. 对于后半部分的限制来说,我们直接减去An1+i?1就可以转化一下求正整数解. 但是前半部分呢? 跟上一道猴子那个很像. 所以我们容斥搞就行了. 但是这道题好像不好写的地方不在这? 这题TMD不就是礼物吗! 大组合数取模如何取? 请参见我<BZOJ 礼物>的题解. 另外吐槽题干 明明是X1+X2+-+Xn=m 并不是小于等于 代码: #include <cstdio> #include <cs

Lucas定理--大组合数取模 学习笔记

维基百科:https://en.wikipedia.org/wiki/Lucas%27_theorem?setlang=zh 参考:http://blog.csdn.net/pi9nc/article/details/9615359 http://hi.baidu.com/lq731371663/item/d7261b0b26e974faa010340f http://hi.baidu.com/j_mat/item/8e3a891c258c4fe9dceecaba 综合以上参考,我做的一下总结:

Uva12034 (组合数取模)

题意:两匹马比赛有三种比赛结果,n匹马比赛的所有可能结果总数 解法: 设答案是f[n],则假设第一名有i个人,有C(n,i)种可能,接下来还有f(n-i)种可能性,因此答案为 ΣC(n,i)f(n-i) 另外这里给出两个求组合数的模板,卢卡斯定理的p是模数,并且要求是素数,第二个是递推式,适合于n<2000的情况 1 #include<cstdio> 2 using namespace std; 3 const int maxn = 1e3; 4 const int mod = 1005