tensorflow批标准化

批标准化(batch normalization,BN)是为了克服神经网络层数加深导致难以训练而产生的。

统计机器学习中的ICS理论(Internal Covariate Shift)理论:源域和目标域的数据分布是一样的。即训练数据和测试数据是满足相同分布的。
Covariate Shift是指训练集的样本数据和目标样本集之间分布不一致时,训练得到的模型不能更好的泛化(generalization)。

解决的思路是根据训练样本和目标样本的比例对训练样本做一个矫正。因此,通过批规范化固定某些层或者所有层的输入,从而固定每层输入信号的均值和方差。
批标准化一般用在激活函数之前,对x=Wu+b做规范化,使结果(输出信号的各个维度)均值为0,方差为1 。类似于吴恩达课程上讲述的feature scaling.

大专栏  tensorflow批标准化优点" class="headerlink" title="优点">优点

批标准化通过规范化让激活函数分布在线性区间,结果就是加大了梯度,让模型更加大胆的进行梯度下降。

本文作者:

Gabriel Sun

本文链接:
https://gabriel1225.github.io/tensorflow批标准化.html

版权声明:
本作品采用
知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议
进行许可。转载请注明出处!

原文地址:https://www.cnblogs.com/dajunjun/p/11712904.html

时间: 2024-10-09 19:56:52

tensorflow批标准化的相关文章

莫烦课程Batch Normalization 批标准化

for i in range(N_HIDDEN): # build hidden layers and BN layers input_size = 1 if i == 0 else 10 fc = nn.Linear(input_size, 10) setattr(self, 'fc%i' % i, fc) # IMPORTANT set layer to the Module self._set_init(fc) # parameters initialization self.fcs.ap

[转] 深入理解Batch Normalization批标准化

转自:https://www.cnblogs.com/guoyaohua/p/8724433.html 郭耀华's Blog 欲穷千里目,更上一层楼项目主页:https://github.com/guoyaohua/ 博客园 首页 新随笔 联系 订阅 管理 欲穷千里目,更上一层楼项目主页:https://github.com/guoyaohua/ 博客园 首页 新随笔 联系 订阅 管理 [深度学习]深入理解Batch Normalization批标准化 这几天面试经常被问到BN层的原理,虽然回答

批标准化(Batch Norm)

BN作用: 加速收敛 控制过拟合,可以少用或不用Dropout和正则 降低网络对初始化权重不敏感 允许使用较大的学习率 一.如何加速收敛? 通过归一化输入值/隐藏单元值,以获得类似的范围值,可加速学习. 限制了在前层的参数更新会影响数值分布的程度,使层的输出更加稳定,神经网络的之后的层就会有更坚实的基础(减弱了后层的参数因前层参数发生变化而受到的影响) 减弱了前层参数的作用与后层参数的作用之间的联系,使得网络每层都可以自己学习,稍稍独立于其他层,有助于加速整个网络的学习. 二.为什么说BN也会起

《Tensorflow技术解析与实战》第四章

Tensorflow基础知识 Tensorflow设计理念 (1)将图的定义和图的运行完全分开,因此Tensorflow被认为是一个"符合主义"的库 (2)Tensorflow中涉及的运算都要放在图中,而图的运行只发生在会话(session)中.开启会话后,就可以用数据去填充节点,进行运算.关闭会话后,就不能继续计算了.因此会话提供了操作运算和Tensor求值的环境 编程模型 边 Tensorflow的边有两种连接关系:数据依赖和控制依赖.其中实线边表示数据依赖,代表数据,即张量.张量

机器学习深度学习领域参考书 《TensorFlow技术解析与实战》PDF下载

<TensorFlow技术解析与实战> 机器学习深度学习领域参考书 包揽TensorFlow1.1的新特性 人脸识别 语音识别 图像和语音相结合等热点一应俱全 李航 余凯等人工智能领域专家倾力推荐目录第一篇 基础篇下载地址:https://pan.baidu.com/s/1iKDExWOgCuvxyqsF12abFg备用地址:https://u1593575.ctfile.com/fs/1593575-330753940 TensorFlow?是谷歌公司开发的深度学习框架,也是目前深度学习的主

《Tensorflow实战Google深度学习框架》PDF一套四本+源代码_高清_完整

TensorFlow实战 热门Tensorflow实战书籍PDF高清版一套共四本+源代码,包含<Tensorflow实战>.<Tensorflow:实战Google深度学习框架(完整版)>.<TensorFlow:实战Google深度学习框架(第2版)>与<TensorFlow技术解析与实战>,不能错过的学习Tensorflow书籍. TensorFlow是谷歌2015年开源的主流深度学习框架,目前已在谷歌.优步(Uber).京东.小米等科技公司广泛应用.&

学习TF:《TensorFlow技术解析与实战》PDF+代码

TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一.<TensorFlow技术解析与实战>从深度学习的基础讲起,深入TensorFlow框架原理.模型构建.源代码分析和网络实现等各个方面.分为基础篇.实战篇和提高篇三部分.基础篇讲解人工智能的入门知识,深度学习的方法,TensorFlow的基础原理.系统架构.设计理念.编程模型.常用API.批标准化.模型的存储与加载.队列与线程,实现一个自定义操作,并进行TensorFlow源代码解析,介绍卷积神经网络(CNN)

对比深度学习十大框架:TensorFlow 并非最好?

http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow 链接:https://www.tensorflow.org/ 对于那些听说过深度学习但还没有太过专门深入的人来说,TensorFlow 是他们最喜欢的深度学习框架,但在这里我要澄清一些事实. 在 TensorFlow 的官网上,它被定义为「一个用于机器智能的开源软件库」,但我觉得应该这么定义:Te

学习笔记TF044:TF.Contrib组件、统计分布、Layer、性能分析器tfprof

TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块.生产代码,以最新官方教程和API指南参考. 统计分布.TF.contrib.ditributions模块,Bernoulli.Beta.Binomial.Gamma.Ecponential.Normal.Poisson.Uniform等统计分布,统计研究.应用中常用,各种统计.机器学习模型基石,概率模型.图形模型依赖. 每个不同统计分布不同特征.函数,同