作者:Edwin Jarvis 特征选择(排序)对于数据科学家.机器学习从业者来说非常重要.好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点.底层结构,这对进一步改善模型.算法都有着重要作用. 特征选择主要有两个功能: 减少特征数量.降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的.通常情况下,我们经常不管三七二十一,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的).
原文 http://dataunion.org/14072.html 主题 特征选择 scikit-learn 作者: Edwin Jarvis 特征选择(排序)对于数据科学家.机器学习从业者来说非常重要.好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点.底层结构,这对进一步改善模型.算法都有着重要作用. 特征选择主要有两个功能: 减少特征数量.降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的.通常情况下,我
前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是非常有效的特征选择方法.但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而怎样量化特征的重要性,就成了各种方法间最大的不同.开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留. 在信息增益中,重要性的衡量标准就是看特征可以为分类系统带来多少信息,带来的信息越多,该特征越重要. 因此先回顾一下信息论中有关信息量(就是"熵")的定义.说有这么一
一:截图 二:快速排序详解 快速排序法(QuickSort)是一种非常快的对比排序方法.它也Divide-And-Conquer思想的实现之一.自从其产生以来,快速排序理论得到了极大的改进,然而在实际中却十分难以编程出正确健壮的代码.本文将对快速排序算法的基本理论和编程实践方面做作一个全面的讲解.在本文讲解中,将忽略很多细枝末节,试图给读者形成一个非常具体的快速排序形象. 快速排序---基本理论 因为该算法是Divide-And-Conquer思想的一个实现,所以本文将以Divide-And-C
1. TF-IDF的误区 TF-IDF可以有效评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.因为它综合表征了该词在文档中的重要程度和文档区分度.但在文本分类中单纯使用TF-IDF来判断一个特征是否有区分度是不够的. 1)它没有考虑特征词在类间的分布.也就是说该选择的特征应该在某类出现多,而其它类出现少,即考察各类的文档频率的差异.如果一个特征词,在各个类间分布比较均匀,这样的词对分类基本没有贡献:但是如果一个特征词比较集中的分布在某个类中,而在其它类中几乎不出现,这样的词却能够
http://www.blogjava.net/zhenandaci/archive/2009/03/24/261701.html 前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法.但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同.开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留. 在信息增益中,重要性的衡量标准就是看特征能够
全排列算法即对给定的一个序列,输出其所有不同的(n!种)排列,例如: 给定序列{1, 2, 3}有{1, 2, 3}.{1, 3, 2}.{2, 1, 3}.{2, 3, 1}.{3, 1, 2}.{3, 2, 1}这6种排列 好像很容易就能写出来,对于更长的序列也只是时间问题,最终肯定能够用笔一一列出来 但是要用程序实现的话,可能让人有点无从下手(乍看好像很简单),下面给出三种不同的解全排列的方法: ------- 一.原创方法 所谓的原创方法就是不考虑算法的效率及其他因素,完全为了解决问题而