DNA Sorting
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 83069 | Accepted: 33428 |
Description
One measure of ``unsortedness‘‘ in a sequence is the number of pairs of entries that are out of order with respect to each other. For instance, in the letter sequence ``DAABEC‘‘, this measure is 5, since D is greater than four letters to its right and E is
greater than one letter to its right. This measure is called the number of inversions in the sequence. The sequence ``AACEDGG‘‘ has only one inversion (E and D)---it is nearly sorted---while the sequence ``ZWQM‘‘ has 6 inversions (it is as unsorted as can
be---exactly the reverse of sorted).
You are responsible for cataloguing a sequence of DNA strings (sequences containing only the four letters A, C, G, and T). However, you want to catalog them, not in alphabetical order, but rather in order of ``sortedness‘‘, from ``most sorted‘‘ to ``least sorted‘‘.
All the strings are of the same length.
Input
The first line contains two integers: a positive integer n (0 < n <= 50) giving the length of the strings; and a positive integer m (0 < m <= 100) giving the number of strings. These are followed by m lines, each containing a string of length n.
Output
Output the list of input strings, arranged from ``most sorted‘‘ to ``least sorted‘‘. Since two strings can be equally sorted, then output them according to the orginal order.
Sample Input
10 6 AACATGAAGG TTTTGGCCAA TTTGGCCAAA GATCAGATTT CCCGGGGGGA ATCGATGCAT
Sample Output
CCCGGGGGGA AACATGAAGG GATCAGATTT ATCGATGCAT TTTTGGCCAA TTTGGCCAAA
Source
East Central North America 1998
一道简单的排序题,题目意思就是求逆序数,先求出每一段DNA序列的逆序数,然后对逆序数进行排序,然后就输出排好序之后的NDA序列;
这里进行求逆序数的有一种方法很巧妙,因为题目中只有4个字母,所以就用到了这种特殊性,我们可以得到O(n)求逆序数的方法,这就需要我们平时的多积累,和我们平时用归并排序或者用树状数组都要方便,对实际问题要进行具体分析;
下面是O(n)的求逆序数的代码;
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; struct node { char s[100];//储存DNA序列 int sum;//储存每个DNA序列的逆序数 }a[100]; bool cmp(node x,node y)//比较函数 { return x.sum<y.sum; } int count_inver(char *str, int len)//求逆序数 { int i; int cnt = 0; int a[4] = {0};//用一个数组个保存字母出现的次数 for(i = len - 1; i >= 0; i--) { switch (str[i]) { case 'A': a[1]++; a[2]++; a[3]++; break; case 'C': a[2]++; a[3]++; cnt += a[1]; break; case 'G': a[3]++; cnt += a[2]; break; case 'T': cnt += a[3]; } } return cnt; } int main() { int m,n,i,j; scanf("%d%d",&n,&m); for(i=0;i<m;i++) { scanf("%s",a[i].s); a[i].sum=count_inver(a[i].s,n); } sort(a,a+m,cmp); for(j=0;j<m;j++) printf("%s\n",a[j].s); }
由于这道题目的数据量不算太大,直接用朴素的求逆序数也能过;
逆序数就是看这个数前面有多少个数比当前的数大,这里直接用了一个二重循环;
#include <iostream> #include <algorithm> using namespace std; struct f{ int num; char w[50]; }s[101]; bool cmp(struct f a, struct f b){ return a.num < b.num; } int main(){ int i, len, n, j, k; cin>>len>>n; for(i = 0; i < n; i++){ s[i].num = 0; cin>>s[i].w; for(j = 1; j < len; j++) for(k = 0; k < j; k++) if(s[i].w[j] < s[i].w[k])//求逆序数 s[i].num++; } sort(s, s+n, cmp); for(i = 0; i < n; i++) cout<<s[i].w<<endl; return 0; }